Math, asked by akshatakshatakshat, 2 months ago

write the additive inverse of each of the following rational numbers
(a)3/7 (b)-2/9 (c)-11/20 (d)4/5
first one to answer will marked as brainest

Answers

Answered by nitishkhokhar6
1

Answer:

We know that inverse of a rational number \frac{a}{b}  

b

a

​  

 is (\frac{-a}{b}  

b

−a

​  

), such that \frac{a}{b}  

b

a

​  

 +( \frac{-a}{b}  

b

−a

​  

) = 0

Additive inverse of \frac{2}{8}  

8

2

​  

 is \frac{-2}{8}  

8

−2

​  

 

= \frac{2}{8\ }  

8  

2

​  

 + (\frac{-2}{8}  

8

−2

​  

 )

= \frac{2}{8}  

8

2

​  

 - \frac{2}{8}  

8

2

​  

 

= 0

(ii): Additive inverse of \frac{-5}{9}  

9

−5

​  

 is \frac{5}{9}  

9

5

​  

 

Because when added , we get,

\frac{-5}{9}  

9

−5

​  

 + \frac{5}{9}  

9

5

​  

 

= 0

(iii): Additive inverse of \frac{-6}{-5}  

−5

−6

​  

 is \frac{-6}{5}  

5

−6

​  

 

Because,

\frac{-6}{-5}  

−5

−6

​  

 + ( \frac{-6}{5}  

5

−6

​  

)

= \frac{6}{5}  

5

6

​  

 - \frac{6}{5}  

5

6

​  

 

=0

(iv): Additive inverse of \frac{2}{-9}  

−9

2

​  

 is\frac{2}{9}  

9

2

​  

 

Therefore,

\frac{2}{-9}  

−9

2

​  

 + \frac{2}{9}  

9

2

​  

 

=0

(v): Additive Inverse of \frac{19}{-6}  

−6

19

​  

 is\frac{19}{6}  

6

19

​  

 

Therefore,

\frac{19}{-6}  

−6

19

​  

 +\frac{19}{6}  

6

19

​  

 

=0 We know that inverse of a rational number \frac{a}{b}  

b

a

​  

 is (\frac{-a}{b}  

b

−a

​  

), such that \frac{a}{b}  

b

a

​  

 +( \frac{-a}{b}  

b

−a

​  

) = 0

Additive inverse of \frac{2}{8}  

8

2

​  

 is \frac{-2}{8}  

8

−2

​  

 

= \frac{2}{8\ }  

8  

2

​  

 + (\frac{-2}{8}  

8

−2

​  

 )

= \frac{2}{8}  

8

2

​  

 - \frac{2}{8}  

8

2

​  

 

= 0

(ii): Additive inverse of \frac{-5}{9}  

9

−5

​  

 is \frac{5}{9}  

9

5

​  

 

Because when added , we get,

\frac{-5}{9}  

9

−5

​  

 + \frac{5}{9}  

9

5

​  

 

= 0

(iii): Additive inverse of \frac{-6}{-5}  

−5

−6

​  

 is \frac{-6}{5}  

5

−6

​  

 

Because,

\frac{-6}{-5}  

−5

−6

​  

 + ( \frac{-6}{5}  

5

−6

​  

)

= \frac{6}{5}  

5

6

​  

 - \frac{6}{5}  

5

6

​  

 

=0

(iv): Additive inverse of \frac{2}{-9}  

−9

2

​  

 is\frac{2}{9}  

9

2

​  

 

Therefore,

\frac{2}{-9}  

−9

2

​  

 + \frac{2}{9}  

9

2

​  

 

=0

(v): Additive Inverse of \frac{19}{-6}  

−6

19

​  

 is\frac{19}{6}  

6

19

​  

 

Therefore,

\frac{19}{-6}  

−6

19

​  

 +\frac{19}{6}  

6

19

​  

 

=0 We know that inverse of a rational number \frac{a}{b}  

b

a

​  

 is (\frac{-a}{b}  

b

−a

​  

), such that \frac{a}{b}  

b

a

​  

 +( \frac{-a}{b}  

b

−a

​  

) = 0

Additive inverse of \frac{2}{8}  

8

2

​  

 is \frac{-2}{8}  

8

−2

​  

 

= \frac{2}{8\ }  

8  

2

​  

 + (\frac{-2}{8}  

8

−2

​  

 )

= \frac{2}{8}  

8

2

​  

 - \frac{2}{8}  

8

2

​  

 

= 0

(ii): Additive inverse of \frac{-5}{9}  

9

−5

​  

 is \frac{5}{9}  

9

5

​  

 

Because when added , we get,

\frac{-5}{9}  

9

−5

​  

 + \frac{5}{9}  

9

5

​  

 

= 0

(iii): Additive inverse of \frac{-6}{-5}  

−5

−6

​  

 is \frac{-6}{5}  

5

−6

​  

 

Because,

\frac{-6}{-5}  

−5

−6

​  

 + ( \frac{-6}{5}  

5

−6

​  

)

= \frac{6}{5}  

5

6

​  

 - \frac{6}{5}  

5

6

​  

 

=0

(iv): Additive inverse of \frac{2}{-9}  

−9

2

​  

 is\frac{2}{9}  

9

2

​  

 

Therefore,

\frac{2}{-9}  

−9

2

​  

 + \frac{2}{9}  

9

2

​  

 

=0

(v): Additive Inverse of \frac{19}{-6}  

−6

19

​  

 is\frac{19}{6}  

6

19

​  

 

Therefore,

\frac{19}{-6}  

−6

19

​  

 +\frac{19}{6}  

6

19

​  

 

=0

Step-by-step explanation:

Answered by bebokjp
1

Answer:

Here is the answer to your question...Hope it helps you!!

Attachments:
Similar questions