Math, asked by hell387, 11 months ago

write the algebraic identities ​

Answers

Answered by rajjbpathan
1

Answer:

heya mate

(a + b) 2 = a 2 + b 2 + 2ab

(a + b) 2 = a 2 + b 2 + 2ab(a − b) 2 = a 2 + b 2 − 2ab

(a + b) 2 = a 2 + b 2 + 2ab(a − b) 2 = a 2 + b 2 − 2aba 2 − b 2 = (a − b) (a + b)

(a + b) 2 = a 2 + b 2 + 2ab(a − b) 2 = a 2 + b 2 − 2aba 2 − b 2 = (a − b) (a + b)(x + a) (x + b) = x 2 + (a + b) x + ab

(a + b) 2 = a 2 + b 2 + 2ab(a − b) 2 = a 2 + b 2 − 2aba 2 − b 2 = (a − b) (a + b)(x + a) (x + b) = x 2 + (a + b) x + ab(a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ca

(a + b) 2 = a 2 + b 2 + 2ab(a − b) 2 = a 2 + b 2 − 2aba 2 − b 2 = (a − b) (a + b)(x + a) (x + b) = x 2 + (a + b) x + ab(a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ca(a + (−b) + (−c)) 2 = a 2 + (−b) 2 + (−c) 2 + 2a (−b) + 2 (−b) (−c) + 2a (−c)

(a + b) 2 = a 2 + b 2 + 2ab(a − b) 2 = a 2 + b 2 − 2aba 2 − b 2 = (a − b) (a + b)(x + a) (x + b) = x 2 + (a + b) x + ab(a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ca(a + (−b) + (−c)) 2 = a 2 + (−b) 2 + (−c) 2 + 2a (−b) + 2 (−b) (−c) + 2a (−c)(a – b – c) 2 = a 2 + b 2 + c 2 − 2ab + 2bc − 2ca

(a + b) 2 = a 2 + b 2 + 2ab(a − b) 2 = a 2 + b 2 − 2aba 2 − b 2 = (a − b) (a + b)(x + a) (x + b) = x 2 + (a + b) x + ab(a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ca(a + (−b) + (−c)) 2 = a 2 + (−b) 2 + (−c) 2 + 2a (−b) + 2 (−b) (−c) + 2a (−c)(a – b – c) 2 = a 2 + b 2 + c 2 − 2ab + 2bc − 2ca(a + b) 3 = a 3 + b 3 + 3ab(a + b)

(a + b) 2 = a 2 + b 2 + 2ab(a − b) 2 = a 2 + b 2 − 2aba 2 − b 2 = (a − b) (a + b)(x + a) (x + b) = x 2 + (a + b) x + ab(a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ca(a + (−b) + (−c)) 2 = a 2 + (−b) 2 + (−c) 2 + 2a (−b) + 2 (−b) (−c) + 2a (−c)(a – b – c) 2 = a 2 + b 2 + c 2 − 2ab + 2bc − 2ca(a + b) 3 = a 3 + b 3 + 3ab(a + b)(a − b) 3 = a 3 - b 3 - 3ab(a - b)

(a + b) 2 = a 2 + b 2 + 2ab(a − b) 2 = a 2 + b 2 − 2aba 2 − b 2 = (a − b) (a + b)(x + a) (x + b) = x 2 + (a + b) x + ab(a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ca(a + (−b) + (−c)) 2 = a 2 + (−b) 2 + (−c) 2 + 2a (−b) + 2 (−b) (−c) + 2a (−c)(a – b – c) 2 = a 2 + b 2 + c 2 − 2ab + 2bc − 2ca(a + b) 3 = a 3 + b 3 + 3ab(a + b)(a − b) 3 = a 3 - b 3 - 3ab(a - b)a 3 − b 3 = (a − b) (a 2 + b 2 + ab)

(a + b) 2 = a 2 + b 2 + 2ab(a − b) 2 = a 2 + b 2 − 2aba 2 − b 2 = (a − b) (a + b)(x + a) (x + b) = x 2 + (a + b) x + ab(a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ca(a + (−b) + (−c)) 2 = a 2 + (−b) 2 + (−c) 2 + 2a (−b) + 2 (−b) (−c) + 2a (−c)(a – b – c) 2 = a 2 + b 2 + c 2 − 2ab + 2bc − 2ca(a + b) 3 = a 3 + b 3 + 3ab(a + b)(a − b) 3 = a 3 - b 3 - 3ab(a - b)a 3 − b 3 = (a − b) (a 2 + b 2 + ab)a 3 + b 3 = (a + b) (a 2 + b 2 − ab)

(a + b) 2 = a 2 + b 2 + 2ab(a − b) 2 = a 2 + b 2 − 2aba 2 − b 2 = (a − b) (a + b)(x + a) (x + b) = x 2 + (a + b) x + ab(a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ca(a + (−b) + (−c)) 2 = a 2 + (−b) 2 + (−c) 2 + 2a (−b) + 2 (−b) (−c) + 2a (−c)(a – b – c) 2 = a 2 + b 2 + c 2 − 2ab + 2bc − 2ca(a + b) 3 = a 3 + b 3 + 3ab(a + b)(a − b) 3 = a 3 - b 3 - 3ab(a - b)a 3 − b 3 = (a − b) (a 2 + b 2 + ab)a 3 + b 3 = (a + b) (a 2 + b 2 − ab)(a + b + c) 3 = a 3 + b 3 + c 3 + 3(a + b)(b + c)(c + a)

(a + b) 2 = a 2 + b 2 + 2ab(a − b) 2 = a 2 + b 2 − 2aba 2 − b 2 = (a − b) (a + b)(x + a) (x + b) = x 2 + (a + b) x + ab(a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ca(a + (−b) + (−c)) 2 = a 2 + (−b) 2 + (−c) 2 + 2a (−b) + 2 (−b) (−c) + 2a (−c)(a – b – c) 2 = a 2 + b 2 + c 2 − 2ab + 2bc − 2ca(a + b) 3 = a 3 + b 3 + 3ab(a + b)(a − b) 3 = a 3 - b 3 - 3ab(a - b)a 3 − b 3 = (a − b) (a 2 + b 2 + ab)a 3 + b 3 = (a + b) (a 2 + b 2 − ab)(a + b + c) 3 = a 3 + b 3 + c 3 + 3(a + b)(b + c)(c + a)a 3 + b 3 + c 3 − 3abc = (a + b + c) (a 2 + b 2 + c 2 − ab − bc − ac)

(a + b) 2 = a 2 + b 2 + 2ab(a − b) 2 = a 2 + b 2 − 2aba 2 − b 2 = (a − b) (a + b)(x + a) (x + b) = x 2 + (a + b) x + ab(a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ca(a + (−b) + (−c)) 2 = a 2 + (−b) 2 + (−c) 2 + 2a (−b) + 2 (−b) (−c) + 2a (−c)(a – b – c) 2 = a 2 + b 2 + c 2 − 2ab + 2bc − 2ca(a + b) 3 = a 3 + b 3 + 3ab(a + b)(a − b) 3 = a 3 - b 3 - 3ab(a - b)a 3 − b 3 = (a − b) (a 2 + b 2 + ab)a 3 + b 3 = (a + b) (a 2 + b 2 − ab)(a + b + c) 3 = a 3 + b 3 + c 3 + 3(a + b)(b + c)(c + a)a 3 + b 3 + c 3 − 3abc = (a + b + c) (a 2 + b 2 + c 2 − ab − bc − ac)If (a + b + c) = 0,

(a + b) 2 = a 2 + b 2 + 2ab(a − b) 2 = a 2 + b 2 − 2aba 2 − b 2 = (a − b) (a + b)(x + a) (x + b) = x 2 + (a + b) x + ab(a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ca(a + (−b) + (−c)) 2 = a 2 + (−b) 2 + (−c) 2 + 2a (−b) + 2 (−b) (−c) + 2a (−c)(a – b – c) 2 = a 2 + b 2 + c 2 − 2ab + 2bc − 2ca(a + b) 3 = a 3 + b 3 + 3ab(a + b)(a − b) 3 = a 3 - b 3 - 3ab(a - b)a 3 − b 3 = (a − b) (a 2 + b 2 + ab)a 3 + b 3 = (a + b) (a 2 + b 2 − ab)(a + b + c) 3 = a 3 + b 3 + c 3 + 3(a + b)(b + c)(c + a)a 3 + b 3 + c 3 − 3abc = (a + b + c) (a 2 + b 2 + c 2 − ab − bc − ac)If (a + b + c) = 0,a 3 + b 3 + c 3 = 3abc

plzz mark as brainlist

Similar questions