Math, asked by gourangadas3218, 9 months ago

Write the algebraic sequence of 1,8,15,21

Answers

Answered by yashbhong22
0

G⃖I⃖V⃖E⃖N⃖ A⃖R⃖I⃖T⃖H⃖M⃖E⃖T⃖I⃖C⃖ S⃖E⃖Q⃖U⃖E⃖N⃖C⃖E⃖ I⃖S⃖ 9⃖, 1⃖5⃖, 2⃖1⃖,.

F⃖I⃖R⃖S⃖T⃖ T⃖E⃖R⃖M⃖ = A⃖ = 9⃖

C⃖O⃖M⃖M⃖O⃖N⃖ D⃖I⃖F⃖F⃖E⃖R⃖E⃖N⃖C⃖E⃖ = D⃖ =1⃖5⃖ 9⃖ = 6⃖

(A⃖) F⃖O⃖R⃖ N⃖A⃖T⃖U⃖R⃖A⃖L⃖ N⃖U⃖M⃖B⃖E⃖R⃖ N⃖

N⃖T⃖H⃖ T⃖E⃖R⃖M⃖ = [(N⃖−1⃖)X⃖6⃖]+9⃖=6⃖N⃖+3⃖ W⃖H⃖E⃖R⃖E⃖ N⃖=1⃖,2⃖,3⃖,

H⃖E⃖N⃖C⃖E⃖ A⃖L⃖G⃖E⃖B⃖R⃖A⃖I⃖C⃖ F⃖O⃖R⃖M⃖ O⃖F⃖ T⃖H⃖E⃖ S⃖E⃖Q⃖U⃖E⃖N⃖C⃖E⃖ 9⃖,1⃖5⃖,2⃖1⃖,. I⃖S⃖ X⃖

N⃖

=6⃖N⃖+3⃖.

(B⃖) N⃖T⃖H⃖ T⃖E⃖R⃖M⃖ =6⃖N⃖+3⃖

2⃖5⃖

T⃖H⃖

T⃖E⃖R⃖M⃖ =6⃖(2⃖5⃖)+3⃖=1⃖5⃖0⃖+3⃖=1⃖5⃖3⃖

(C⃖) S⃖U⃖M⃖ O⃖F⃖ F⃖I⃖R⃖S⃖T⃖ N⃖ T⃖E⃖R⃖M⃖S⃖ I⃖S⃖ G⃖I⃖V⃖E⃖N⃖ B⃖Y⃖,

S⃖

N⃖

=

2⃖

1⃖

N⃖[X⃖

1⃖

+X⃖

N⃖

]

S⃖U⃖M⃖ O⃖F⃖ 2⃖4⃖ T⃖E⃖R⃖M⃖S⃖ I⃖S⃖

S⃖

2⃖4⃖

=

2⃖

1⃖

N⃖[X⃖

1⃖

+X⃖

2⃖

4⃖]=

2⃖

2⃖5⃖

[9⃖+1⃖4⃖7⃖]=1⃖9⃖5⃖0⃖

S⃖U⃖M⃖ O⃖F⃖ 5⃖0⃖ T⃖E⃖R⃖M⃖S⃖ I⃖S⃖

S⃖

5⃖0⃖

=

2⃖

1⃖

N⃖[X⃖

1⃖

+X⃖

5⃖0⃖

]=

2⃖

5⃖0⃖

[9⃖+6⃖(5⃖0⃖)+3⃖]=7⃖8⃖0⃖0⃖

S⃖U⃖M⃖ O⃖F⃖ T⃖E⃖R⃖M⃖S⃖ F⃖R⃖O⃖M⃖ T⃖W⃖E⃖N⃖T⃖Y⃖ F⃖I⃖F⃖T⃖H⃖ T⃖O⃖ F⃖I⃖F⃖T⃖I⃖E⃖T⃖H⃖

=S⃖

5⃖0⃖

−S⃖

2⃖4⃖

=7⃖8⃖0⃖0⃖−1⃖9⃖5⃖0⃖

=5⃖8⃖5⃖0⃖

(D⃖) L⃖E⃖T⃖ S⃖U⃖M⃖ O⃖F⃖ F⃖I⃖R⃖S⃖T⃖ N⃖ T⃖E⃖R⃖M⃖S⃖ I⃖S⃖ 2⃖0⃖1⃖5⃖,

S⃖

N⃖

=

2⃖

1⃖

N⃖[X⃖

1⃖

+X⃖

N⃖

]

2⃖0⃖1⃖5⃖=

2⃖

1⃖

N⃖[9⃖+6⃖N⃖+3⃖]

2⃖0⃖1⃖5⃖=3⃖N⃖

2⃖

+6⃖N⃖

3⃖N⃖

2⃖

+6⃖N⃖−2⃖0⃖1⃖5⃖=0⃖

S⃖O⃖L⃖V⃖I⃖N⃖G⃖ A⃖B⃖O⃖V⃖E⃖ E⃖Q⃖U⃖A⃖T⃖I⃖O⃖N⃖ F⃖O⃖R⃖ N⃖, T⃖H⃖E⃖ V⃖A⃖L⃖U⃖E⃖ O⃖F⃖ N⃖ I⃖S⃖ N⃖O⃖T⃖ A⃖ N⃖A⃖T⃖U⃖R⃖A⃖L⃖ N⃖U⃖M⃖B⃖E⃖R⃖.

H⃖E⃖N⃖C⃖E⃖ 2⃖0⃖1⃖5⃖ C⃖A⃖N⃖ N⃖O⃖T⃖ B⃖E⃖ T⃖H⃖E⃖ S⃖U⃖M⃖ O⃖F⃖ S⃖O⃖M⃖E⃖ T⃖E⃖R⃖M⃖S⃖ O⃖F⃖ T⃖H⃖I⃖S⃖ S⃖E⃖Q⃖U⃖E⃖N⃖C⃖E⃖.

Answered by GujjarBoyy
2

Step-by-step explanation:

Given arithmetic sequence is 9, 15, 21,.

First term = a = 9

Common difference = d =15 9 = 6

(A) For natural number n

nth term = [(n−1)x6]+9=6n+3 where n=1,2,3,

Hence algebraic form of the sequence 9,15,21,. is x

n

=6n+3.

(B) nth term =6n+3

25

th

term =6(25)+3=150+3=153

(C) Sum of first n terms is given by,

S

n

=

2

1

n[X

1

+X

n

]

Sum of 24 terms is

S

24

=

2

1

n[X

1

+X

2

4]=

2

25

[9+147]=1950

Sum of 50 terms is

S

50

=

2

1

n[X

1

+X

50

]=

2

50

[9+6(50)+3]=7800

Sum of terms from twenty fifth to fiftieth

=S

50

−S

24

=7800−1950

=5850

Similar questions