Math, asked by Chintu3009, 4 months ago

write the AM of 1/2 and 1/4​

Answers

Answered by Anonymous
1

⠀⠀⠀⠀a) Let the point P (x,y) divides internally join the points A (8,9) and B (-7,4) in ratio 2:3.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\underline{\bigstar\:\boldsymbol{Using\:Section\:Formula\::}}\\ \\

\star\;{\boxed{\sf{\pink{(x,y) = \bigg( \dfrac{m_1 x_2 + m_2 x_1}{m_1 + m_2}\:,\: \dfrac{m_1 y_2 + m_2 y_1}{m_1 + m_2} \bigg)}}}}\\ \\

\sf Here \begin{cases} & \sf{x_1\:,\: x_2 = \bf{8\:,\:-7}}  \\ & \sf{y_1\:,\:y_2 = \bf{9\:,\:4}} \\ & \sf{m_1\:,\:m_2 = \bf{2\:,\:3}} \end{cases}\\ \\

\dag\;{\underline{\frak{Putting\:values\:in\;formula,}}}\\ \\

:\implies\sf (x,y) = \bigg( \dfrac{2 \times -7 + 3 \times 8}{2 + 3}\:,\: \dfrac{2 \times 4 + 3 \times 9}{2 + 3} \bigg)\\ \\ \\ :\implies\sf (x,y) = \bigg( \dfrac{-14 + 24}{5}\:,\: \dfrac{8 + 27}{5} \bigg)\\ \\ \\ :\implies\sf (x,y) = \bigg( \dfrac{10}{5}\:,\: \dfrac{35}{5} \bigg)\\ \\ \\ :\implies{\underline{\boxed{\frak{\purple{(x,y) = (2\:,7)}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{The\: coordinates\:of\:the\:point\:is\: {\textsf{\textbf{(2,7)}}}.}}}\\ \\

⠀⠀⠀⠀b) Let the point P (x,y) divides internally join the points A (1,-2) and B (4,7) in ratio 1:2.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

Again,

\underline{\bigstar\:\boldsymbol{Using\:Section\:Formula\::}}\\ \\

\sf Here \begin{cases} & \sf{x_1\:,\: x_2 = \bf{4\:,\:1}}  \\ & \sf{y_1\:,\:y_2 = \bf{-2\:,\:7}} \\ & \sf{m_1\:,\:m_2 = \bf{1\:,\:2}} \end{cases}\\ \\

:\implies\sf (x,y) = \bigg( \dfrac{1 \times 4 + 2 \times 1}{1 + 2}\:,\: \dfrac{1 \times 7 + 2 \times - 2}{1 + 2} \bigg)\\ \\ \\ :\implies\sf (x,y) = \bigg( \dfrac{4 + 2}{3}\:,\: \dfrac{7 - 4}{3} \bigg)\\ \\ \\ :\implies\sf (x,y) = \bigg( \dfrac{6}{3}\:,\: \dfrac{3}{3} \bigg)\\ \\ \\ :\implies{\underline{\boxed{\frak{\purple{(x,y) = (2\:,1)}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{The\: coordinates\:of\:the\:point\:is\: {\textsf{\textbf{(2,1)}}}.}}}

⚡{ \huge{ \fcolorbox{red}{purple}{SᴘᴀᴍᴍɪɴɢQᴜᴇᴇɴ51}}}

Similar questions