write the co ordinate of centroid of triangle whose vertices are (4, 7) (8, 4)
Answers
S⃗T⃗A⃗R⃗T⃗B⃗I⃗A⃗
S⃗T⃗A⃗R⃗T⃗B⃗I⃗A⃗
0⃗8⃗.0⃗7⃗.2⃗0⃗1⃗8⃗
M⃗A⃗T⃗H⃗
S⃗E⃗C⃗O⃗N⃗D⃗A⃗R⃗Y⃗ S⃗C⃗H⃗O⃗O⃗L⃗
+1⃗0⃗ P⃗T⃗S⃗
A⃗N⃗S⃗W⃗E⃗R⃗E⃗D⃗
(4⃗,7⃗), (8⃗,4⃗), (7⃗,1⃗1⃗) F⃗I⃗N⃗D⃗ T⃗H⃗E⃗ C⃗E⃗N⃗T⃗R⃗O⃗I⃗D⃗S⃗ O⃗F⃗ T⃗H⃗E⃗ T⃗R⃗I⃗A⃗N⃗G⃗L⃗E⃗S⃗ W⃗H⃗O⃗S⃗E⃗ V⃗E⃗R⃗T⃗I⃗C⃗E⃗S⃗ A⃗R⃗E⃗ G⃗I⃗V⃗E⃗N⃗
2⃗
S⃗E⃗E⃗ A⃗N⃗S⃗W⃗E⃗R⃗S⃗
A⃗N⃗S⃗W⃗E⃗R⃗S⃗
T⃗I⃗W⃗A⃗A⃗V⃗I⃗
T⃗I⃗W⃗A⃗A⃗V⃗I⃗ G⃗E⃗N⃗I⃗U⃗S⃗
L⃗E⃗T⃗ T⃗H⃗E⃗ P⃗O⃗I⃗N⃗T⃗S⃗ (4⃗,7⃗), (8⃗,4⃗), A⃗N⃗D⃗ (7⃗,1⃗1⃗) B⃗E⃗ P⃗(X⃗₁, Y⃗₁), Q⃗(X⃗₂,Y⃗₂), A⃗N⃗D⃗ R⃗(X⃗₃,Y⃗₃) R⃗E⃗S⃗P⃗E⃗C⃗T⃗I⃗V⃗E⃗L⃗Y⃗.
N⃗O⃗W⃗, U⃗S⃗I⃗N⃗G⃗ T⃗H⃗E⃗ F⃗O⃗R⃗M⃗U⃗L⃗A⃗,
G⃗(X⃗,Y⃗) = [ (X⃗₁ + X⃗₂ + X⃗₃)/3⃗ , (Y⃗₁ + Y⃗₂ + Y⃗₃)/3⃗ ]
= [(4⃗ + 8⃗ + 7⃗)/3⃗ , (7⃗ + 4⃗ + 1⃗1⃗)/3⃗]
= [1⃗9⃗/3⃗ , 2⃗2⃗/3⃗]
= (1⃗9⃗/3⃗, 2⃗2⃗/3⃗)
H⃗E⃗N⃗C⃗E⃗, T⃗H⃗E⃗ C⃗O⃗-O⃗R⃗D⃗I⃗N⃗A⃗T⃗E⃗S⃗ O⃗F⃗ T⃗H⃗E⃗ P⃗O⃗I⃗N⃗T⃗ G⃗ I⃗S⃗ (1⃗9⃗/3⃗, 2⃗2⃗/3⃗).