Computer Science, asked by anjali557712, 6 months ago

Write the code for dropping row of index 5 in the given DataFrame df. *

options


A. df.drop(df.index[5], axis =0 )
B. df.drop(df.index[5], axis = 1)
C. df.drop(df.row[5], axis = 1)
D. df.drop(df.row[5], axis = 0)​

Answers

Answered by GeekGuy1
1

Explanation:

pandas.DataFrame.drop

DataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')[source]

Drop specified labels from rows or columns.

Remove rows or columns by specifying label names and corresponding axis, or by specifying directly index or column names. When using a multi-index, labels on different levels can be removed by specifying the level.

Parameters

labelssingle label or list-like

Index or column labels to drop.

axis{0 or ‘index’, 1 or ‘columns’}, default 0

Whether to drop labels from the index (0 or ‘index’) or columns (1 or ‘columns’).

indexsingle label or list-like

Alternative to specifying axis (labels, axis=0 is equivalent to index=labels).

columnssingle label or list-like

Alternative to specifying axis (labels, axis=1 is equivalent to columns=labels).

levelint or level name, optional

For MultiIndex, level from which the labels will be removed.

inplacebool, default False

If False, return a copy. Otherwise, do operation inplace and return None.

errors{‘ignore’, ‘raise’}, default ‘raise’

If ‘ignore’, suppress error and only existing labels are dropped.

Returns

DataFrame

DataFrame without the removed index or column labels.

Raises

KeyError

If any of the labels is not found in the selected axis.

See also

DataFrame.loc

Label-location based indexer for selection by label.

DataFrame.dropna

Return DataFrame with labels on given axis omitted where (all or any) data are missing.

DataFrame.drop_duplicates

Return DataFrame with duplicate rows removed, optionally only considering certain columns.

Series.drop

Return Series with specified index labels removed.

Examples

df = pd.DataFrame(np.arange(12).reshape(3, 4),

columns=['A', 'B', 'C', 'D'])

df

A B C D

0 0 1 2 3

1 4 5 6 7

2 8 9 10 11

Drop columns

df.drop(['B', 'C'], axis=1)

A D

0 0 3

1 4 7

2 8 11

df.drop(columns=['B', 'C'])

A D

0 0 3

1 4 7

2 8 11

Drop a row by index

df.drop([0, 1])

A B C D

2 8 9 10 11

Drop columns and/or rows of MultiIndex DataFrame

midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'],

['speed', 'weight', 'length']],

codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],

[0, 1, 2, 0, 1, 2, 0, 1, 2]])

df = pd.DataFrame(index=midx, columns=['big', 'small'],

data=[[45, 30], [200, 100], [1.5, 1], [30, 20],

[250, 150], [1.5, 0.8], [320, 250],

[1, 0.8], [0.3, 0.2]])

df

big small

lama speed 45.0 30.0

weight 200.0 100.0

length 1.5 1.0

cow speed 30.0 20.0

weight 250.0 150.0

length 1.5 0.8

falcon speed 320.0 250.0

weight 1.0 0.8

length 0.3 0.2

df.drop(index='cow', columns='small')

big

lama speed 45.0

weight 200.0

length 1.5

falcon speed 320.0

weight 1.0

length 0.3

df.drop(index='length', level=1)

big small

lama speed 45.0 30.0

weight 200.0 100.0

cow speed 30.0 20.0

weight 250.0 150.0

falcon speed 320.0 250.0

weight 1.0 0.8

pandas.DataFrame.dotpandas.DataFrame.d

Similar questions