Math, asked by spectrahelix, 1 month ago

write the complex number -√3-i in polar form


NOTE:→ It's an question of class 11 science so please give me the answer according to the grade. If you give me the correct answer than I will mark it as a brainliest answer and if you give me the wrong or unnecessary answer than I will report your answer. Thank you for your cooperation ​​

Answers

Answered by TrustedAnswerer19
41

Answer:

Given,

z = - √3 - i

so,

 |z|  = r =  \sqrt{ {( -  \sqrt{3} )}^{2}  +  {( - 1)}^{2} }  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \sqrt{3 + 1}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \sqrt{4}  = 2 \\  \\ arg \: z =  \theta \:  =  -  \pi + {tan}^{ - 1} ( \frac{  1}{  \sqrt{3}  } ) =   - \pi  +  \frac{\pi}{6}  \\  =  -  \frac{5\pi}{6} \:\:\:\:\:[ \:3rd \: quadrant \:] \\ now \: polar \: form \:  \\ r(cos \theta \:  + i \: sin \theta) \\  = 2 \{cos \:  ( -  \frac{5\pi}{6} ) + i \: sin \: ( -  \frac{5\pi}{6} ) \} \\  = 2(cos \:  \frac{5\pi}{6}  - i \: sin \:  \frac{5\pi}{6} ) \:  \:  \:  \:  \:  \:  \{ \: cause  \:  \: \: cos( -  \theta) = cos \theta \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: sin( -  \theta) =  - sin \theta \:  \} \\  = answer \\  \\ other \: polar \: form \\ r {e}^{i \theta}  \\  = 2 {e}^{i \:( -   \frac{ 5\pi}{6} )}  \\  = 2 {e}^{ -  \frac{i5\pi}{6} }  \\

Similar questions