Math, asked by bhanu8989, 11 months ago

Write the complex number z = 1-i/(cos π/3 + i sin π/3) .

Answers

Answered by Anonymous
3

 \large{ \bold{ \underline{ \underline{ \: Answer : \:  \:  \: }}}}

 \to \frac{2}{4}  -  \frac{2i}{4}

\large{ \bold{ \underline{ \underline{ \: Remember : \:  \:  \: }}}}

 \to  {(i)}^{2}  =  - 1

\large{ \bold{ \underline{ \underline{ \: Explaination  : \:  \:  \: }}}}

 \to \frac{1 - i}{ (\cos( \frac{\pi}{3} )+ i \sin( \frac{\pi}{3} )  ) }  \\  \\ =   \frac{1 - i}{ \frac{ 1 }{2}  + i \frac{ \sqrt{3} }{2} }  \\  \\  =  \frac{1 - i}{ \frac{1 + i \sqrt{ 3} }{2} }  \\  \\   = \frac{2(1 - i)}{1 + i \sqrt{3} }  \\  \\ =   \frac{2 - 2i}{1 + i \sqrt{3} }  \\  \\   = \frac{(2 - 2i)(1 - i \sqrt{3} )}{(1  + i \sqrt{3} )(1 - i \sqrt{3} )}  \\  \\  =  \frac{2 - 2i \sqrt{3} - 2i + 2i \sqrt{3}  }{ {(1)}^{2} -  {(i \sqrt{3} )}^{2}  }  \\  \\ =   \frac{2 - 2i}{1 - ( - 1)3}  \\  \\  =  \frac{2 - 2i}{1 + 3}  \\  \\  =  \frac{2 - 2i}{4}  \\  \\  =  \frac{2}{4}  -  \frac{2i}{4}

Similar questions