Write the condition to be satisfied for which equations ax² + 2bx + c = 0 and bx²-2√acx+b=0 have equal roots.
Answers
SOLUTION :
Given : ax² + 2bx + c = 0 …………(1)
and bx² - 2√acx + b = 0…………..(2)
On comparing the given equation with Ax² + Bx + C = 0
Let D1 & D2 be the discriminants of the two given equations .
For eq 1 :
Here, A = a , B = 2b , C = c
D(discriminant) = B² – 4AC
D1 = (2b)² - 4 × a × C
D1 = 4b² - 4ac ………(3)
For eq 2 :
bx² - 2√acx + b = 0
Here, A = b , B = - 2√ac, C = b
D(discriminant) = B² – 4AC
D2 = (- 2√ac)² - 4 × b × b
D2 = 4ac - 4b² …………(4)
Given roots are equal for both the equations so, D1 & D2 = B² – 4AC = 0
D1 = 0
4b² - 4ac = 0
[From eq 3]
4b² = 4ac
b² = ac ………….(5)
D2 = 0
4ac - 4b² = 0
4ac = 4b²
ac = b² …………(6)
From eq 5 & 6 ,
b² = ac
Hence, b² = ac is the condition under which the given equations have equal roots.
HOPE THIS ANSWER WILL HELP YOU... ...
Solution :
Given two quadratic equations
ax² + 2bx + c = 0 ,
and
bx² - 2√acx + b = 0
Discreminant (D) = 0
[ Since , Equation has equal
roots ]
(2b)² - 4ac = (-2√ac)² - 4b²
=> 4b² - 4ac = 4ac - 4b²
=> Divide each term by 4 ,
we get
b² - ac = ac - b²
=> 2b² = 2ac
=> b² = ac
•••••