.Write the cubic polynomial whose zeroes are 1, -3 & 2.
Answers
EXPLANATION.
Cubic polynomial.
Whose zeroes are = 1, - 3 and 2.
As we know that,
Let one zeroes be = α = 1.
One zeroes be = β = - 3.
One zeroes be = γ = 2.
Sum of the zeroes of the cubic polynomial.
⇒ α + β + γ = - b/a.
⇒ (1) + (-3) + 2.
⇒ 1 - 3 + 2 = 0.
⇒ α + β + γ = 0. - - - - - (1).
Products of the zeroes of the cubic polynomial two at a time.
⇒ αβ + βγ + γα = c/a.
⇒ (1)(-3) + (-3)(2) + (2)(1).
⇒ - 3 - 6 + 2 = - 7.
⇒ αβ + βγ + γα = - 7. - - - - - (2).
Products of the zeroes of the cubic polynomial.
⇒ αβγ = - d/a.
⇒ (1) x (-3) x (2) = - 6.
⇒ αβγ = - 6. - - - - - (3).
As we know that,
Formula of cubic polynomial.
⇒ x³ - (α + β + γ)x² + (αβ + βγ + γα)x - αβγ.
Put the values in the equation, we get.
⇒ x³ - (0)x² + (-7)x - (-6).
⇒ x³ - 7x + 6.
MORE INFORMATION.
Biquadratic equation.
If α, β, γ, δ are roots of the biquadratic equation ax⁴ + bx³ + cx² + dx + e = 0, then.
σ₁ = α + β + γ + δ = - b/a.
σ₂ = αβ + αγ + αδ + βγ + βδ + γδ = c/a.
σ₃ = αβγ + αβδ + αγδ + βγδ = - d/a.
σ₄ = αβγδ = e/a.
Answer:
Answered by Rohith kumar maths dude :-
Explanation: -
Here given that ,
☆Cubic polynomial whose zeroes are 1,-3 and 2.
▪Already we know that,
Let,
one zero be=a=1
one zero be=b=-3
one zero be =c=2
☆As we know that
●Sum of zeroes of cubic polynomial
=a+b+c=-b/a
=1+(-3)+2
=1-3+2
a+b+c=0----(i)
●We know that product of zeroes of cubic polynomial ,
▪ab+bc+ca=c/a
▪=1 (-3)+(-3)(2)+2 (1)
▪-3-6+2=-7
▪ab+bc+ca=-7------(ii)
●Product of the zeroes of cubic polynomial,
abc=-d/a
1 (-3)(2)=-6
abc=-6 -------(iii)
▪We know that,
☆☆Formula of cubic polynomial
x^3-(a+b+c)x^2+(ab+bc+ca)x-abc
Applying the values we get,
x^3-(0)^2+(-7)x-(-6)
=x^3-7x+6.