Math, asked by rajenderpra2891, 2 months ago

Write the curved surface area, Total surface area and volume of cube, cuboid, cylinder, cone, sqhere and hemisphere. Maths Question

Answers

Answered by sia1234567
86

 \huge \underline {\fbox {answer}}

\begin{array}{ ||c|c||  }  \bigstar \:  \underline\bold \red{shapes}& \bigstar \:   \underline\bold \red{formulaes} \\   \sf\blacksquare \: CSA\: of \: cube &  \sf\leadsto \: {4a}^{2} \\   \sf\blacksquare \: volume \: of \: cube & \sf \leadsto {a}^{3} \\   \sf\blacksquare \: volume \: of \: cuboid & \sf \leadsto \: length \times \: width  \times \: height  \\   \sf\blacksquare \: volume \: of \: cylinder &  \sf\leadsto \pi {r}^{2}h\\  \sf\blacksquare \: volume \: of \: cone &  \sf \leadsto\pi {r}^{2} \frac{h}{3} \\ \\  \sf  \blacksquare \: volume \: of \: sphere &  \sf \leadsto\frac{4}{3} \pi  {r}^{3} \\  \\  \sf \blacksquare \: volume \: of \: hemisphere &  \sf \leadsto\frac{2}{3} \pi  {r}^{3}  \end{array}

______________________________________________


mddilshad11ab: Perfect¶
Answered by Anonymous
154

Answer:

\begin{gathered}{\huge{\textsf{\textbf{\underline{\underline{\color{purple}{Answer:}}}}}}}\end{gathered}

\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}

\begin{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c|c}\bf \pink{Shape}&\bf\purple{Volume}& \bf  \blue{Surface Area }\\\frac{\qquad \qquad}{}&\frac{\qquad \qquad}{}&\frac{\qquad \qquad}{} \\   \star \: \sf{Cube}& \sf{{a}^{3}}& \sf{ {6(a)}^{2}}\\ \\  \star \: \sf{Cuboid}& \sf{lbh}& \sf{2(lb + bh + lh)}\\ \\  \star\: \sf{Cylinder}&\sf{{\pi} {r}^{2}h}&\sf{2{\pi}r(r + h)}\\\\ \star \: \sf{Cone}& \sf{\dfrac{1}{3}{\pi}{r}^{2}h}& \sf{{\pi}r(r + l)} \\\\ \star\sf{Sphere}& \sf{\dfrac{4}{3}{\pi} {r}^{3} }& \sf{4{\pi} {r}^{2}} \\ \\\star \: \sf{Hemisphere} &\sf{ \dfrac{2}{3}{\pi} {r}^{3} } &\sf{3{\pi} {r}^{2}}  \\  \\\end{array}} \\\\\dag\bf\underline\red{LoveYouHindi}\end{gathered}\end{gathered}\end{gathered}\end{gathered}


mddilshad11ab: Perfect¶
Similar questions