Write the dimensional formula for the terms (i) linear momentum and (ii) pressure.
Answers
Answered by
1
Linear Momentum = Mass x Velocity
Now
Velocity = Displacement/Time
Velocity = L/T
So
Linear Momentum= M x LT^-1
So Dimensional Formula of Linear Momentum= M1L1T-1
SI unit of Linear Momentum is kg ms-1
★★★★★★★★★★★★★★★★★★★★★★★
pressure
Dimensional Formulae of Length = [L], Time = [T], Mass = [M]
Pressure, p = Force/Area - - - - - - - - (1)
Force, F = mass × acceleration—————(2)
Acceleration, a = initial velocity- final velocity/ time - - - - - - - - (3)
Velocity, v = displacement/time
V = [L] /[T]
V = [LT^-1] - - - - - - - - (4)
Putting (4) in (3)
Acceleration, a = [LT^-1] - [LT^-1] /[T]
a = [LT^-1] /[T]
a = [LT^-2] - - - - - - - (5)
Putting (5) in (2)
Force, F = [M] × [LT^-2]
F = [MLT^-2] –———————(6)
Putting (6) in (1)
Pressure, p = [MLT^-2]/ [L^2]
Pressure, p = [ML^-1T^-2]
Now
Velocity = Displacement/Time
Velocity = L/T
So
Linear Momentum= M x LT^-1
So Dimensional Formula of Linear Momentum= M1L1T-1
SI unit of Linear Momentum is kg ms-1
★★★★★★★★★★★★★★★★★★★★★★★
pressure
Dimensional Formulae of Length = [L], Time = [T], Mass = [M]
Pressure, p = Force/Area - - - - - - - - (1)
Force, F = mass × acceleration—————(2)
Acceleration, a = initial velocity- final velocity/ time - - - - - - - - (3)
Velocity, v = displacement/time
V = [L] /[T]
V = [LT^-1] - - - - - - - - (4)
Putting (4) in (3)
Acceleration, a = [LT^-1] - [LT^-1] /[T]
a = [LT^-1] /[T]
a = [LT^-2] - - - - - - - (5)
Putting (5) in (2)
Force, F = [M] × [LT^-2]
F = [MLT^-2] –———————(6)
Putting (6) in (1)
Pressure, p = [MLT^-2]/ [L^2]
Pressure, p = [ML^-1T^-2]
Similar questions