Math, asked by guptakhushi10191, 1 year ago

Write the dimensions of a/b in the relation f=ax+bt^2

Answers

Answered by Anonymous
0

ax and bt^2 must have same dimension

ax= bt^2

a/b = t^2/x

= T^2 L^-1

Answered by Anonymous
0

F = ax + bt^2

f = ax \\ \\  a =  \frac{f}{x}  =  \frac{ {m}^{1} {l}^{1}  {t}^{ - 2}  }{ {l}^{1} }  \\  \\ a =  {m}^{1}  {t}^{ - 2}  \\  \\ f = b {t}^{2}  \\  \\ b =  \frac{f}{ {t}^{2} }  =  \frac{ {m}^{1}  {l}^{1} {t}^{ - 2}  }{ {t}^{2} }   =  {m}^{ 1} {l}^{1}  {t}^{ - 2}  {t}^{ - 2}  \\  \\ b = {m}^{ 1} {l}^{1}  {t}^{ - 4}

 \frac{a}{b}  =  \frac{ {m}^{1}  {t}^{ - 2} }{ {m}^{1} {l}^{1} {t}^{ - 4}   }  \\  \\  \frac{a}{b}  =  {t}^{2}  {l}^{ - 1}

⚠️⚠️ⓉⒽⒶⓃⓀⓈ⚠️⚠️

Similar questions