Math, asked by attitudegirljatti, 4 months ago

write the discriminant of the quadratic equation (x+5)= 2(5x-3)​

Answers

Answered by SuitableBoy
58

{\huge{\boxed{\boxed{\mathcal{QUESTION}}}}}

Write the discriminant of the quadratic equation

( x + 5 )² = 2( 5x - 3 )

{\huge{\boxed{\boxed{\mathcal{ANSWER\checkmark}}}}}

Concept :

• In these type of questions , first we have to make it a proper quadratic equation .

• The equation should be in the form of :

 \boxed{ \rm \: a {x}^{2}  + by + c}

where , a ≠ 0

• Then we would find it's discriminant .

Discriminant : It's a quantity , which depends on coefficients of Polynomials and tell the properties of the roots of the Polynomial .

Given :

  • ( x + 5 )² = 2( 5x - 3 )

To Find :

  • The Discriminant (d)

Solution :

First making it in the form of standard equation .

 \mapsto \rm \:  {(x + 5)}^{2}  = 2(5x - 3)

 \mapsto \rm \:  {x}^{2}  +  {5}^{2}  + 2 \times x \times 5 = 10x - 6

 \mapsto \rm \:  {x}^{2}  + 25 +  \cancel{10x} -  \cancel{10x} + 6 = 0

 \mapsto \rm \:  {x}^{2}  + 31 = 0

 \implies \boxed{ \rm \:  {x}^{2}  + 0x + 31 = 0}

Here ,

  \pink{ \ddot{ \smile} }\:  \rm \: a = 1 \\  \blue{ \ddot{ \smile}} \:  \rm \: b = 0 \\  \red{ \ddot { \smile}} \:  \rm \: c = 31

So , using the Formula , to find the Discriminant

 \rm \mapsto \: discriminant =  {b}^{2}  - 4ac

Put the values now ..

 \mapsto \rm \: d =  {0}^{2}  + 4 \times 1 \times 31

 \mapsto \rm \: d = 0 - 124

 \mapsto \boxed{ \rm \: d =  - 124}

or

 \mapsto \boxed{ \rm \: discriminant =  - 124}

________________________

Know more :

  •  \rm {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab
  •  \rm \:  {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab
  •  \rm \: if \\   \rm \: d > 0  \:  \:  \: the \: roots \: are \: real \: and \: distinct
  •  \rm \: if \\  \rm \: d = 0 \:  \: the \: roots \: are \: real \: and \: equal
  •  \rm \: if \:   \\  \rm \: d < 0 \:  \:  \:  \: roots \: are \: imaginary

Similar questions