Write the domain and range of fution f(x)=(x_2)/(x_3)
Answers
Given,
Let us find its domain.
We know the denominator of a fraction cannot be zero.
Hence the domain is,
Now let us find its range.
So,
As we said, the denominator of a fraction cannot be zero.
Hence the range is,
Answer:
Given,
\longrightarrow f(x)=\dfrac{x-2}{x-3}⟶f(x)=
x−3
x−2
Let us find its domain.
We know the denominator of a fraction cannot be zero.
\longrightarrow x-3\neq0⟶x−3
=0
\longrightarrow x\neq3⟶x
=3
Hence the domain is,
\longrightarrow\underline{\underline{x\in\mathbb{R}-\{3\}}}⟶
x∈R−{3}
Now let us find its range.
So,
\longrightarrow f(x)=\dfrac{x-2}{x-3}⟶f(x)=
x−3
x−2
\longrightarrow (x-3)\,f(x)=x-2⟶(x−3)f(x)=x−2
\longrightarrow x\,f(x)-3\,f(x)=x-2⟶xf(x)−3f(x)=x−2
\longrightarrow x\,f(x)-x=3\,f(x)-2⟶xf(x)−x=3f(x)−2
\longrightarrow x(f(x)-1)=3\,f(x)-2⟶x(f(x)−1)=3f(x)−2
\longrightarrow x=\dfrac{3\,f(x)-2}{f(x)-1}⟶x=
f(x)−1
3f(x)−2
As we said, the denominator of a fraction cannot be zero.
\longrightarrow f(x)-1\neq0⟶f(x)−1
=0
\longrightarrow f(x)\neq1⟶f(x)
=1
Hence the range is,
\longrightarrow\underline{\underline{f(x)\in\mathbb{R}-\{1\}}}⟶
f(x)∈R−{1}