Math, asked by balamuruganykokila, 7 months ago

Write the domain and range of fution f(x)=(x_2)/(x_3)​

Answers

Answered by shadowsabers03
7

Given,

\longrightarrow f(x)=\dfrac{x-2}{x-3}

Let us find its domain.

We know the denominator of a fraction cannot be zero.

\longrightarrow x-3\neq0

\longrightarrow x\neq3

Hence the domain is,

\longrightarrow\underline{\underline{x\in\mathbb{R}-\{3\}}}

Now let us find its range.

So,

\longrightarrow f(x)=\dfrac{x-2}{x-3}

\longrightarrow (x-3)\,f(x)=x-2

\longrightarrow x\,f(x)-3\,f(x)=x-2

\longrightarrow x\,f(x)-x=3\,f(x)-2

\longrightarrow x(f(x)-1)=3\,f(x)-2

\longrightarrow x=\dfrac{3\,f(x)-2}{f(x)-1}

As we said, the denominator of a fraction cannot be zero.

\longrightarrow f(x)-1\neq0

\longrightarrow f(x)\neq1

Hence the range is,

\longrightarrow\underline{\underline{f(x)\in\mathbb{R}-\{1\}}}

Answered by snehildhiman7
3

Answer:

Given,

\longrightarrow f(x)=\dfrac{x-2}{x-3}⟶f(x)=

x−3

x−2

Let us find its domain.

We know the denominator of a fraction cannot be zero.

\longrightarrow x-3\neq0⟶x−3

=0

\longrightarrow x\neq3⟶x

=3

Hence the domain is,

\longrightarrow\underline{\underline{x\in\mathbb{R}-\{3\}}}⟶

x∈R−{3}

Now let us find its range.

So,

\longrightarrow f(x)=\dfrac{x-2}{x-3}⟶f(x)=

x−3

x−2

\longrightarrow (x-3)\,f(x)=x-2⟶(x−3)f(x)=x−2

\longrightarrow x\,f(x)-3\,f(x)=x-2⟶xf(x)−3f(x)=x−2

\longrightarrow x\,f(x)-x=3\,f(x)-2⟶xf(x)−x=3f(x)−2

\longrightarrow x(f(x)-1)=3\,f(x)-2⟶x(f(x)−1)=3f(x)−2

\longrightarrow x=\dfrac{3\,f(x)-2}{f(x)-1}⟶x=

f(x)−1

3f(x)−2

As we said, the denominator of a fraction cannot be zero.

\longrightarrow f(x)-1\neq0⟶f(x)−1

=0

\longrightarrow f(x)\neq1⟶f(x)

=1

Hence the range is,

\longrightarrow\underline{\underline{f(x)\in\mathbb{R}-\{1\}}}⟶

f(x)∈R−{1}

Similar questions