Science, asked by vilas9938, 4 months ago

write the electron dot structure of sodium cholride and formation of ionic bond​

Answers

Answered by harsh21205
0

Explanation:

Given:

BC= 15cm

\rm{sin\ B=\dfrac{4}{5}}sin B=

5

4

To Find:

i) Measurement of AB and AC

ii) Measurement of CD and AD, if tan(∠ADC)=1

To Prove:

\longrightarrow\bf{tan^{2}\ B-\dfrac{1}{cos^{2}\ B}=-1}⟶tan

2

B−

cos

2

B

1

=−1

Solution:

In ΔABC,

\longrightarrow\rm{cos\ B=\sqrt{1-sin^{2}B}}⟶cos B=

1−sin

2

B

\longrightarrow\rm{cos\ B=\sqrt{1-\bigg(\dfrac{4}{5}\bigg)^{2}}}⟶cos B=

1−(

5

4

)

2

\longrightarrow\rm{cos\ B=\sqrt{1-\dfrac{16}{25}}}⟶cos B=

1−

25

16

\longrightarrow\rm{cos\ B=\sqrt{\dfrac{25-16}{25}}}⟶cos B=

25

25−16

\longrightarrow\rm{cos\ B=\sqrt{\dfrac{9}{25}}}⟶cos B=

25

9

\longrightarrow\rm{cos\ B=\dfrac{3}{5}}⟶cos B=

5

3

Now,

\longrightarrow\rm{cos\ B=\dfrac{BC}{AB}}⟶cos B=

AB

BC

\longrightarrow\rm{\dfrac{3}{5}=\dfrac{15}{AB}}⟶

5

3

=

AB

15

\longrightarrow\rm{AB=\dfrac{15\times5}{3}}⟶AB=

3

15×5

\longrightarrow\rm\green{AB=25\ cm}⟶AB=25 cm

Now,

\longrightarrow\rm{sin\ B=\dfrac{AC}{AB}}⟶sin B=

AB

AC

\longrightarrow\rm{\dfrac{4}{5}=\dfrac{AC}{25}}⟶

5

4

=

25

AC

\longrightarrow\rm{\dfrac{4\times25}{5}=AC}⟶

5

4×25

=AC

\longrightarrow\rm{AC=\dfrac{4\times25}{5}}⟶AC=

5

4×25

\longrightarrow\rm\green{AC=20\ cm}⟶AC=20 cm

━━━━━━━━━━━━━━━━━━━━━

Now, In ΔACD

tan(∠ADC)=1

That means,

∠ADC= 45°

Or

D= 45°

So,

\longrightarrow\rm{tan\ D=\dfrac{AC}{CD}}⟶tan D=

CD

AC

\longrightarrow\rm{tan\ 45^{\circ}=\dfrac{20}{CD}}⟶tan 45

=

CD

20

\longrightarrow\rm{1=\dfrac{20}{CD}}⟶1=

CD

20

\longrightarrow\rm\green{CD=20\ cm}⟶CD=20 cm

Now,

\longrightarrow\rm{sin\ D=\dfrac{AC}{AD}}⟶sin D=

AD

AC

\longrightarrow\rm{sin\ 45^{\circ}=\dfrac{20}{AD}}⟶sin 45

=

AD

20

\longrightarrow\rm{\dfrac{1}{\sqrt{2}} =\dfrac{20}{AD}}⟶

2

1

=

AD

20

\longrightarrow\rm\green{AD=20\sqrt{2}\ cm}⟶AD=20

2

cm

━━━━━━━━━━━━━━━━━━━━━

Now, we know that,

\pink{\underline{\boxed{\bf{1+tan^{2}\theta=sec^{2}\theta}}}}

1+tan

2

θ=sec

2

θ

\purple{\underline{\boxed{\bf{sec \theta}=\dfrac{1}{cos\theta}}}}

secθ=

cosθ

1

So, by using above properties

\longrightarrow\rm{1+tan^{2}B=sec^{2}B}⟶1+tan

2

B=sec

2

B

\longrightarrow\rm{tan^{2}B-sec^{2}B=-1}⟶tan

2

B−sec

2

B=−1

\longrightarrow\rm{tan^{2}B-\bigg(\dfrac{1}{cosB} \bigg)^{2}=-1}⟶tan

2

B−(

cosB

1

)

2

=−1

\longrightarrow\rm{tan^{2}B-\dfrac{1}{cos^{2}B}=-1}⟶tan

2

B−

cos

2

B

1

=−1

\bigstar\bf\red{Hence\ Proved}★Hence Proved

Answered by HinaKhan0001
1

Hope it's help you...✌️❣️

By losing an electron, Na becomes Na+ (cation) and this electron is accepted by Cl to form Cl- (anion). The oppositely charged ions attract each other and form NaCl. They are held together by strong electrostatic forces of attraction.

Similar questions