Chemistry, asked by suryanshpandeyji, 7 months ago

write the equilibrium constant, Kp for the following gaseous reversible reaction A2(g) +3b2(g) revesible 2Cg​

Answers

Answered by nirman95
1

To find:

equilibrium constant, Kp for the following gaseous reversible reaction:

 \sf{A_{2} + 3B_{2} \:  \iff \: 2C_{2}}

Calculation:

The balanced reaction is:

 \boxed{ \sf{A_{2} + 3B_{2} \:  \iff \: 2C_{2}}}

First , we need to calculate the equilibrium constant for the reaction ;

 \sf{ \therefore \:  k_{c} =  \dfrac{ { \{ C_{2}\}}^{2} }{ \{A_{2} \}  { \{ B_{2}\}}^{3} } }

Now , let's find k_(p)

 \sf{ \therefore \:  k_{p} =  k_{c} \times {(RT)}^{\Delta n_{g} } }

 \sf{  =  > \:  k_{p} =  \dfrac{ { \{ C_{2}\}}^{2} }{ \{A_{2} \}  { \{ B_{2}\}}^{3} }  \times {(RT)}^{ \{2 - (3 + 1) \}}}

 \sf{  =  > \:  k_{p} =  \dfrac{ { \{ C_{2}\}}^{2} }{ \{A_{2} \}  { \{ B_{2}\}}^{3} }  \times {(RT)}^{ \{2 - (4) \}}}

 \sf{  =  > \:  k_{p} =  \dfrac{ { \{ C_{2}\}}^{2} }{ \{A_{2} \}  { \{ B_{2}\}}^{3} }  \times {(RT)}^{ - 2}}

So, final answer is:

 \boxed{ \bf{\:  k_{p} =  \dfrac{ { \{ C_{2}\}}^{2} }{ \{A_{2} \}  { \{ B_{2}\}}^{3} }  \times {(RT)}^{ - 2}}}

Similar questions