Math, asked by shaik3278, 1 year ago

write the expand form of log a power m b power n/c power z​

Answers

Answered by HappiestWriter012
29

The expanded form of the logarithm is m log a + n log b - z log c

Given logarithm,

 \boxed{ \large log ( \frac{ {a}^{m}  \times  {b}^{n} }{ {c}^{z } } ) }

Quotient rule :

 log( \frac{p}{q} )  =  log(p)  -  log(q)

Product rule :

 log(p \times q)  =  log(p)  +  log(q)

Power rule :

 log( {p}^{q} )  = q \times  log(p)

Using the above rules, We can try to expand the logarithm.

 = log ( \frac{ {a}^{m}  \times  {b}^{n} }{ {c}^{z } }  )\\  \\   =  log( {a}^{m} \times  {b}^{n}  )  -  log( {c}^{z} )  \\  \\  =  log( {a}^{m} )  +  log( {b}^{n} )  -  log( {c}^{z} )  \\  \\  = m \times  log(a)  + n \times  log(b)   - z \times  log(c)

Therefore, Expanded form of the logarithm is

m log a + n log b - z log c

Answered by Anonymous
30

\Huge{\underline{\underline{\mathfrak{Answer \colon}}}}

To expand the given expression

 \sf{ log(  \frac{{a}^{m} \times  {b}^{n}  }{c {}^{z} } )} \\

Quotient Rule,

  \boxed{\sf{log( \frac{x}{y} ) = log \: x \:  -  \: log \: y}}

 \rightarrow \:  \sf{log( {a}^{m} \times  {b}^{n}) - log( {c}^{z} )  }

Product Rule,

  \boxed{\sf{log(x.y) = log \:  x \:  + log \: y}}

 \rightarrow \:  \sf{log( {a}^{m}) +  log( {b}^{n} ) - log( {c}^{z})  }

Exponential Rule,

  \boxed{\sf{log( {x}^{y}) = y.log(x) }}

  \large{\rightarrow \:  \sf{m.log(a) + n.log(b) - z.log(c)}}

Thus,

You will get m.log(a) + n.log(b) - z.log(c)

Similar questions