Math, asked by krs1000024519, 8 months ago

Write the expanded form of log x2y 3 z 5

Answers

Answered by tennetiraj86
2

Answer:

answer for the given problem is given

Attachments:
Answered by anildeny
0

Answer:

PLEASE SUBSCRIBE MY CHANNEL [ MALLU VLOGZ ]

Step-by-step explanation:

b\tt (69) ^{2} \: can \: be \: expressed \: as \: (70 - 1) ^{2}(69)

2

canbeexpressedas(70−1)

2

\tt Solving \: the \: above \: using \: the \: formula \: (a - b) ^{2}Solvingtheaboveusingtheformula(a−b)

2

As, in the above Question

\begin{lgathered}\bold a = 70 \\ \bold b = 1\end{lgathered}

a=70

b=1

Thus, solving on the Following Identity

\rm (a - b {)}^{2} = {a}^{2} - 2ab - + {b}^{2}(a−b)

2

=a

2

−2ab−+b

2

(70 {)}^{2} - 2 \times 70 \times 1 + (1 {)}^{2}(70)

2

−2×70×1+(1)

2

\red{ \implies} \tt 4900 - 140 + 1⟹4900−140+1

\red{ \implies} \tt4901 - 140⟹4901−140

\red{ \implies} \tt 4761⟹4761

Important Identities

\tt(a + {)}^{0} = 1(a+)

0

=1

\tt(a + b {)}^{1} = 1(a+b)

1

=1

\tt(a + b {)}^{2} = {a}^{2} + 2ab + {n}^{2}(a+b)

2

=a

2

+2ab+n

2

\tt(a - b {)}^{2} = {a}^{2} - 2ab + {b}^{2}(a−b)

2

=a

2

−2ab+b

2

\tt {a}^{2} - {b}^{2} = (a - b)(a +b )a

2

−b

2

=(a−b)(a+b)

\tt{a}^{2} + {b}^{2} = (a + b {)}^{2} - 2aba

2

+b

2

=(a+b)

2

−2ab

\tt{a} + {b}^{2} = (a - b {)}^{2} + 2aba+b

2

=(a−b)

2

+2ab

\tt(a + b) ^{3} = {a}^{3} + 3 {a}^{2} b + 3a {b}^{2} + {b}^{3}(a+b)

3

=a

3

+3a

2

b+3ab

2

+b

3

\tt(a - b {)}^{3} = {a}^{3} - 3 {a}^{2} b + 3a {b}^{2} - {b}^{3}(a−b)

3

=a

3

−3a

2

b+3ab

2

−b

3

\tt {a}^{3} + {b}^{3} = (a + b)( {a}^{2} - ab + {b}^{2} )a

3

+b

3

=(a+b)(a

2

−ab+b

2

)

\tt{a}^{3} - {b}^{3} = (a - b)( {a}^{2} + ab + {b}^{2} )a

3

−b

3

=(a−b)(a

2

+ab+b

2

)

\tt(a + b + c) ^{2} = {a}^{2} + {b}^{2} + {c}^{2} + 2ab + 2bc + 2ca(a+b+c)

2

=a

2

+b

2

+c

2

+2ab+2bc+2ca

Similar questions