Write the expanded form of log x2y 3 z 5
Answers
Answer:
answer for the given problem is given
Answer:
PLEASE SUBSCRIBE MY CHANNEL [ MALLU VLOGZ ]
Step-by-step explanation:
b\tt (69) ^{2} \: can \: be \: expressed \: as \: (70 - 1) ^{2}(69)
2
canbeexpressedas(70−1)
2
\tt Solving \: the \: above \: using \: the \: formula \: (a - b) ^{2}Solvingtheaboveusingtheformula(a−b)
2
As, in the above Question
\begin{lgathered}\bold a = 70 \\ \bold b = 1\end{lgathered}
a=70
b=1
Thus, solving on the Following Identity
\rm (a - b {)}^{2} = {a}^{2} - 2ab - + {b}^{2}(a−b)
2
=a
2
−2ab−+b
2
(70 {)}^{2} - 2 \times 70 \times 1 + (1 {)}^{2}(70)
2
−2×70×1+(1)
2
\red{ \implies} \tt 4900 - 140 + 1⟹4900−140+1
\red{ \implies} \tt4901 - 140⟹4901−140
\red{ \implies} \tt 4761⟹4761
Important Identities
\tt(a + {)}^{0} = 1(a+)
0
=1
\tt(a + b {)}^{1} = 1(a+b)
1
=1
\tt(a + b {)}^{2} = {a}^{2} + 2ab + {n}^{2}(a+b)
2
=a
2
+2ab+n
2
\tt(a - b {)}^{2} = {a}^{2} - 2ab + {b}^{2}(a−b)
2
=a
2
−2ab+b
2
\tt {a}^{2} - {b}^{2} = (a - b)(a +b )a
2
−b
2
=(a−b)(a+b)
\tt{a}^{2} + {b}^{2} = (a + b {)}^{2} - 2aba
2
+b
2
=(a+b)
2
−2ab
\tt{a} + {b}^{2} = (a - b {)}^{2} + 2aba+b
2
=(a−b)
2
+2ab
\tt(a + b) ^{3} = {a}^{3} + 3 {a}^{2} b + 3a {b}^{2} + {b}^{3}(a+b)
3
=a
3
+3a
2
b+3ab
2
+b
3
\tt(a - b {)}^{3} = {a}^{3} - 3 {a}^{2} b + 3a {b}^{2} - {b}^{3}(a−b)
3
=a
3
−3a
2
b+3ab
2
−b
3
\tt {a}^{3} + {b}^{3} = (a + b)( {a}^{2} - ab + {b}^{2} )a
3
+b
3
=(a+b)(a
2
−ab+b
2
)
\tt{a}^{3} - {b}^{3} = (a - b)( {a}^{2} + ab + {b}^{2} )a
3
−b
3
=(a−b)(a
2
+ab+b
2
)
\tt(a + b + c) ^{2} = {a}^{2} + {b}^{2} + {c}^{2} + 2ab + 2bc + 2ca(a+b+c)
2
=a
2
+b
2
+c
2
+2ab+2bc+2ca