Math, asked by jashansraan, 10 months ago

write the expanded form of the following numbers using the laws of exponents.
(a)- 12546.90
(b) - 5676.535
(c) - 6346.10
(d) - 1.7656​

Answers

Answered by Agastya0606
18

Given: Four terms.

To find: Write them in expanded form.

Solution:

  • Now the four terms are:

                (a)- 12546.90 , (b) - 5676.535 , (c) - 6346.10 , (d) - 1.7656​

  • In expanded form, they are:

                (a) -12546.90 = -1254690 × 10^-2

                (b) -5676.535 = -5676535 × 10^-3

                (c) -6345.10 = -634510 × 10^-2

                (d) -1.7656 = -17656 × 10^-4

Answer:

              So the numbers are written in expanded form in solution part.


mysticd: Please verify the answer again.
Answered by mysticd
55

 \red{a ) Expanded \: form \:of \: -12546.90}

 = - ( 10000 + 2000 + 500+40+6+ \frac{9}{10} )

 \green {= -( 1\times 10^{4}+2\times 10^{3}+5\times 10^{2} + 4 \times 10^{1} + 9 \times 10^{-1} )}

 \red{b ) Expanded \: form \:of \: -5676.535}

 = -( 5000+ 600+70+6+\frac{5}{10}+\frac{3}{100}+\frac{5}{1000})

 \green {= -( 5\times 10^{3}+6\times 10^{2} + 7\times 10^{1} + 5 \times 10^{-1} + 3\times 10^{-2} + 5 \times 10^{-3} )}

 \red{c ) Expanded \: form \:of \: -6346.10}

 = -( 6000+ 300+40+6+\frac{1}{10})

 \green {= -( 6\times 10^{3}+3\times 10^{2} + 4\times 10^{1} + 1 \times 10^{-1} )}

 \red{d ) Expanded \: form \:of \: -1.7656}

 = -( 1 + \frac{7}{10} + \frac{6}{100}+\frac{5}{1000} + \frac{6}{10000} )

 \green {= -( 1 + 7\times 10^{-1} + 6\times 10^{-2} + 5 \times 10^{-3} + 6 \times 10^{-4}) }

•••♪

Similar questions