Math, asked by umeshpatnaik3132, 10 months ago

Write the exponential form of log7 1/343=-a​

Answers

Answered by jitumahi435
1

The given expression:

\log _7 \dfrac{1}{343} = - a

We have to write the exponential form of the given expression.

Solution:

\log _7 \dfrac{1}{343} = - a

∵ 347 = 7 × 7 × 7 = 7^{3}

\log _7 \dfrac{1}{7^3} = - a

Using the logarithm identity:

\log  \dfrac{1}{m^n}=\log m^{-n}

\log _7 7^{-3} = - a

⇒ - \log _7 7^{3} = - a

\log _7 7^{3} = a

7^{a} = 7^{3} [ ∵ Using the logarithm property]

\dfrac{7^{a}}{7^{3}} = 1

7^{a-3} = 1

7^{a-3} - 1 = 0

∴ The exponential form of \log _7 \dfrac{1}{343} = - a is 7^{a-3} - 1 = 0 or, 7^{a} = 7^{3} .

Similar questions