Math, asked by PragyaTbia, 1 year ago

Write the following as a single matrix:  \left[\begin{array}{ccc}-1&2\\1&-2\\3&-1\end{array}\right] + \left[\begin{array}{ccc}0&1\\-1&0\\-2&1\end{array}\right]

Answers

Answered by hukam0685
0

Answer:

Single matrix

\left[\begin{array}{ccc}-1&3\\0&-2\\1&0\end{array}\right]\\\\

Step-by-step explanation:

Write the following as a single matrix:

let

A= \left[\begin{array}{ccc}-1&2\\1&-2\\3&-1\end{array}\right]_{3\times 2}

B= \left[\begin{array}{ccc}0&1\\-1&0\\-2&1\end{array}\right]_{3\times 2}

as both matrix are of same order,thus we can add them and convert into a single matrix

A+B=\left[\begin{array}{ccc}-1&2\\1&-2\\3&-1\end{array}\right] + \left[\begin{array}{ccc}0&1\\-1&0\\-2&1\end{array}\right]\\\\\\= \left[\begin{array}{ccc}-1+0&2+1\\1-1&-2+0\\3-2&-1+1\end{array}\right]\\\\\\=\left[\begin{array}{ccc}-1&3\\0&-2\\1&0\end{array}\right]\\\\

by this way given data can  be converted into a single matrix.  

Similar questions