Math, asked by Jaiganesha, 5 months ago

Write the following complex number in the form of A + iB

\mathsf{\frac{2+5i}{3-2i} + \frac{2-5i}{3+2i}} \\

Answers

Answered by llMichFabulousll
2

This means that it either goes from positiveor negative or from negative to positive. As a general rule, the complex conjugate of a+bi is a−bi . Therefore, the complex conjugate of 3−2i is 3+2i .

Answered by ITZBFF
69

\mathsf\red{Given \: :}

\mathsf{\frac{2+5i}{3-2i} + \frac{2-5i}{3+2i}} \\

\mathsf{}

\mathsf{= \: \frac{(2+5i) . (3+2i) \: + \: (2-5i) . (3-2i)}{(3-2i) \times (3+2i)}} \\

\mathsf{}

\mathsf{= \: \frac{(6-10) + i(4+15) \: + \: (6-10)+i(-4-15)}{{3}^{2} - {(2i)}^{2}}} \\

\mathsf{}

\mathsf{= \: \frac{-4+19i \: + \: (-4)-19i}{9+4}} \\

\mathsf{}

\mathsf{= \: \frac{-4+19i-4-19i}{13}} \\

\mathsf{}

\mathsf{= \: \frac{-8}{13}} \\

\mathsf{}

\mathsf{}

\boxed{\mathsf\red{A + iB = \frac{-8}{13} + i(0)}} \\

Similar questions