Math, asked by Lonely28, 7 months ago

Write the following cubes in expanded form :-
 {(2x + 1)}^{3}

Answers

Answered by TheDefaulter
8

ANSWER :-

We have to expand  {(2x + 1)}^{3}

For this problem, we must know the given formula below -

 {(a + b)}^{3}  =  \:  {a}^{3}  +  {b}^{3}  + 3ab(a + b)

Now,  \\  \\  {(2x + 1)}^{3}  = ( {2x)}^{3}  +  {(1)}^{3}  + 3(2x)(1)(2x + 1) \\  \\  =  >  {(2x + 1)}^{3}  = 8 {x}^{3}  + 1 + 6x(2x + 1) \\  \\  =  >  {(2x + 1)}^{3}  = 8 {x}^{3}  +1 +  12 {x}^{2}  + 6x \\  \\

Hence, the expanded form of  {(2x + 1)}^{3} is  8 {x}^{3}  +1 +  12 {x}^{2}  + 6x

Answered by Blossomfairy
9

 \rightarrow \sf \red{( {2x + 1)}^{3} } \\  \rightarrow \sf{ {(2x)}^{3} +  {(1)}^{3} + 3 \times 2x \times 1(2x + 1) } \\  \rightarrow \sf{ {8x}^{3} + 1 + 6x(2x + 1) } \\   \rightarrow \sf{ {8x}^{3}  + 1 +  {12x}^{2}  + 6x}

 \bullet \bf \red{ \: formula \rightarrow} \sf { {a}^{3} +  {b}^{3} + 3ab(a + b)  }

Similar questions