Math, asked by khushirai5432, 7 months ago

write the following equation of m_7=13​

Answers

Answered by siddharth909
0

Answer:

1

Barenblat, G.I., Zheltov, Yu.P., and Kochina, I.N., On basic concepts of the theory of filtration of homogeneous fluids in cracked rocks, Prikl. Mat. Mekh., 1960, vol. 25, no. 5, pp. 852–864.

Google Scholar 

2

Dzektser, E.S., Equations of motion of underground water with free surface in multilayered media, Dokl. Akad. Nauk SSSR, 1975, vol. 220, no. 3, pp. 540–543.

Google Scholar 

3

Hallaire, M., Effective potential of water in drying solid, in Termodinamika pochvennoi vlagi (Thermodynamics of Soil Moisture), Leningrad: Gidromet, 1966, pp. 325–360.

4

Nerpin, C.B. and Chudnovskii, A.F., Energo- i massoobmen v sisteme pochva–rastenie–vozdukh (Energy and Mass Exchange in the Soil–Vegetable–Air System), Leningrad: Gidrometeoizdat, 1975.

Google Scholar 

5

Chen, P.J and Curtin, M.E., On a theory of heat conduction involving two temperatures, J. Angew. Math. Phys., 1968, vol. 19, pp. 614–627.

Article Google Scholar 

6

Showalter, R.E. and Ting, T.W., Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1970, vol. 1, no. 1, pp. 1–26.

MathSciNet MATH Article Google Scholar 

7

Sobolev, S.L., On one new problem of mathematical physics, Izv. Akad. Nauk SSSR. Ser. Mat., 1954, vol. 18, no. 1, pp. 3–50.

MathSciNet MATH Google Scholar 

8

Sveshnikov, A.A., Al’shin, A.B., Korpusov, M.O., and Pletner, Yu.D., Lineinye i nelineinye uravneniya sobolevskogo tipa (Sobolev Type Linear and Nonlinear Equations), Moscow: Fizmatlit, 2007.

Google Scholar 

9

Nakhushev, A.M., Drobnoe ischislenie i ego primenenie (Fractional Calculus and Its Applications), Moscow: Fizmatlit, 2003.

Google Scholar 

10

Uchaikin, V.V., Metod drobnykh proizvodnykh (Method of Fractional Derivatives), Ul’yanovsk: Artishok, 2008.

Google Scholar 

11

O’Shaughnessy, L., Problem 433, Am. Math. Month., 1918, vol. 25, pp. 172–173.

MathSciNet Article Google Scholar 

12

Mandelbrojt, S., Sulla generalizzazione del calcolo delle variazione, Atti Reale Accad. Naz. Lincei. Rend Cl. Sci. Fis. Mat. E Natur. Ser. 6 , 1925, vol. 1, pp. 151–156.

MATH Google Scholar 

13

Samko, S.G., Kilbas, A.A., and Marichev, O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya (Fractional Integrals and Derivatives and Some of Their Applications), Minsk: Nauka i Tekhnika, 1987.

Google Scholar 

14

Pskhu, A.V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka (Fractional Partial Differential Equations), Moscow: Nauka, 2005.

Google Scholar 

15

Caputo, H., Lineal model of dissipation whose Q is almost frequency independent. II, Geophys J. Astron. Soc., 1967, vol. 13, pp. 529–539.

Article Google Scholar 

16

Wyss, W., The fractional diffusion equation, J. Math. Phys., 1986, vol. 27, no. 11, pp. 2782–2785.

MathSciNet MATH Article Google Scholar 

17

Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier, 2006.

Google Scholar

Similar questions