Math, asked by Ashrabxa, 2 months ago

Write the following fraction into partial fraction

  \sf \dfrac{2x + 3}{(x + 1)(x - 3)}

Answers

Answered by atharvarangdale
1

Answer:

x^2 -3x + x - 3

Step-by-step explanation:

9*.+('8?"8/''?8'

Answered by ApprenticeIAS
3

 \underline{ \underline{ \sf \red{Question}}} \red{: }

 \sf \dfrac{2x + 3}{(x + 1)(x - 3)}

 \underline{ \underline{ \sf \red{Answer}}} \red{: }

 \rm \red{Let}

  \boxed{ \boxed{\rm \dfrac{2x + 3}{(x + 1)(x - 3)} =  \dfrac{A }{(x + 1)}  +  \dfrac{B}{(x - 3)} }} -  -  - (1)

 \rm  \implies \dfrac{2x + 3}{ \cancel{(x + 1)(x - 3)}} =  \dfrac{A (x - 3) + B(x + 1)}{ \cancel{(x + 1)(x -  3)}  }

 \rm{ \implies \: 2x + 3 =A x  -3A +  Bx +   B }

 \implies \rm{2x + 3 = x(A +  B) + ( - 3A +  B)}

 \rm \red{Equating  \: the \:  corresponding \:  coefficients : }

 \rm \red{case \: i : }

 \rm{A + B = 2}

 \boxed{ \boxed{B = 2 - A }} -  -  - (2)

 \rm \red{case \: i i: }

 \rm{ - 3A + B = 3}

 \rm{substituting \:  \: B = 2-A   }

 \rm - 3A + 2 - A  = 3

  \rm  - 4A  = 3 - 2

 \boxed{  \boxed{\rm A  =  \dfrac{ - 1}{4} }} -  -  - (3)

 \rm \red{ From  \: Equation \:  (2) : }

 \rm{substituting \:  \:   A  \: =  \dfrac{ - 1}{4}  }

 \rm B = 2 - \bigg(  - \dfrac{1}{4} \bigg)

 \rm B = 2   + \dfrac{1}{4}

 \boxed{ \boxed{ \rm B = \dfrac{9}{4} }} -  -  -  (4)

 \rm \red{ From  \: Equation \:  (1) : }

\rm \dfrac{2x + 3}{(x + 1)(x - 3)} =  \dfrac{ -  \frac{  1}{4}  }{(x + 1)}  +  \dfrac{ \frac{9}{4} }{(x - 3)}

 \boxed{ \boxed{ \rm \dfrac{2x + 3}{(x + 1)(x - 3)} =  \dfrac{ -   1}{4(x + 1)}  +  \dfrac{ 9}{4(x - 3)} }}

Similar questions