write the following functions in the simplest form :
1•tan-¹(cosx - sin x/cos x + sin x)
2• tan-¹(3a²x-x³/a³-3ax²)
Answers
Question :-
- tan-¹(cosx - sin x/cos x + sin x)
Solution :-
→ tan-¹(cosx - sin x/cos x + sin x)
Divide Both Numerator & Denominator by cosx we get ,
→ tan-¹[{(cosx/cosx) - (sin x/cosx)} /{(cosx/cosx) + (sin x/cosx)}]
Using (sinx/cosx) = tanx now,
→ tan-¹[( 1 - tanx ) / (1 + tanx)]
Or,
→ tan-¹[ (1 - tanx) / (1 + 1 * tanx) ]
using 1 = tan(π/4) now,
→ tan-¹[ ( tan(π/4) - tanx) / (1 + tan(π/4)*tanx) ]
Comparing it with [ (tanA - tanB) / ( 1 + tanA*tanB) ]
→ tan-¹[ tan( π/4 - x ) ]
→ (π/4 - x) (Ans.)
____________________________
- tan-¹(cosx - sin x/cos x + sin x)
- tan-¹(3a²x-x³/a³-3ax²)
____________________________
1. tan-¹(cosx - sin x/cos x + sin x)
➠tan -¹ (cosx - sinx/cosx + sinx)
➠tan -¹{(cosx/cosx)-(sinx/cosx)/(cosx/cosx) + (sinx/cosx}
➠tan-¹ [(1-tanx)/(1+tanx)]
➠tan-¹[(1-tanx)/(1+1×tanx)]
➠tan -¹[{tan(π/4)-tanx}/{1+tan(π/4)×tanx}]
➠tan -¹ [tan(π/4-x)]
➠(π/4-x)
____________________________
2. tan-¹(3a²x-x³/a³-3ax²)
➠tan-¹[{3a²(a tan∅)-(a tan∅)³}/{a³-3 tan ²∅}]
➠tan-¹[{3a³ tan∅ - a³ tan³ ∅}/{a³- 3a.a²tan²∅}]
➠tan-¹[{a³ (3tan∅ - tan³ ∅}/{a³- (1-3tan²∅)}]
➠tan-¹[{3tan∅-tan³∅}/{1-3tan²∅}]
➠tan-¹(tan3∅)