Math, asked by BrainIyCastIe, 10 months ago

write the following functions in the simplest form :
1•tan-¹(cosx - sin x/cos x + sin x)
2• tan-¹(3a²x-x³/a³-3ax²)

Answers

Answered by RvChaudharY50
17

Question :-

  • tan-¹(cosx - sin x/cos x + sin x)

Solution :-

→ tan-¹(cosx - sin x/cos x + sin x)

Divide Both Numerator & Denominator by cosx we get ,

tan-¹[{(cosx/cosx) - (sin x/cosx)} /{(cosx/cosx) + (sin x/cosx)}]

Using (sinx/cosx) = tanx now,

→ tan-¹[( 1 - tanx ) / (1 + tanx)]

Or,

tan-¹[ (1 - tanx) / (1 + 1 * tanx) ]

using 1 = tan(π/4) now,

tan-¹[ ( tan(π/4) - tanx) / (1 + tan(π/4)*tanx) ]

Comparing it with [ (tanA - tanB) / ( 1 + tanA*tanB) ]

tan-¹[ tan( π/4 - x ) ]

→ (π/4 - x) (Ans.)

Answered by Anonymous
23

____________________________

\huge\tt{TO~SIMPLIFY:}

  • tan-¹(cosx - sin x/cos x + sin x)
  • tan-¹(3a²x-x³/a³-3ax²)

____________________________

\huge\tt{SIMPLIFYING:}

1. tan-¹(cosx - sin x/cos x + sin x)

➠tan -¹ (cosx - sinx/cosx + sinx)

➠tan -¹{(cosx/cosx)-(sinx/cosx)/(cosx/cosx) + (sinx/cosx}

➠tan-¹ [(1-tanx)/(1+tanx)]

➠tan-¹[(1-tanx)/(1+1×tanx)]

➠tan -¹[{tan(π/4)-tanx}/{1+tan(π/4)×tanx}]

➠tan -¹ [tan(π/4-x)]

➠(π/4-x)

____________________________

2. tan-¹(3a²x-x³/a³-3ax²)

➠tan-¹[{3a²(a tan∅)-(a tan∅)³}/{a³-3 tan ²∅}]

➠tan-¹[{3a³ tan∅ - a³ tan³ ∅}/{a³- 3a.a²tan²∅}]

➠tan-¹[{a³ (3tan∅ - tan³ ∅}/{a³- (1-3tan²∅)}]

➠tan-¹[{3tan∅-tan³∅}/{1-3tan²∅}]

➠tan-¹(tan3∅)

➠3∅

____________________________

Similar questions