write the following polynomial in standard form and also write down its degree ( y²-4) (y³-5)
answer me fast please...
Answers
Step-by-step explanation:
(y
(y 3
(y 3 −2)(y
(y 3 −2)(y 3
(y 3 −2)(y 3 +11)
(y 3 −2)(y 3 +11)=y
(y 3 −2)(y 3 +11)=y 3
(y 3 −2)(y 3 +11)=y 3 (y
(y 3 −2)(y 3 +11)=y 3 (y 3
(y 3 −2)(y 3 +11)=y 3 (y 3 +11)−2(y
(y 3 −2)(y 3 +11)=y 3 (y 3 +11)−2(y 3
(y 3 −2)(y 3 +11)=y 3 (y 3 +11)−2(y 3 +11)
(y 3 −2)(y 3 +11)=y 3 (y 3 +11)−2(y 3 +11)=y
(y 3 −2)(y 3 +11)=y 3 (y 3 +11)−2(y 3 +11)=y 6
(y 3 −2)(y 3 +11)=y 3 (y 3 +11)−2(y 3 +11)=y 6 +11y
(y 3 −2)(y 3 +11)=y 3 (y 3 +11)−2(y 3 +11)=y 6 +11y 3
(y 3 −2)(y 3 +11)=y 3 (y 3 +11)−2(y 3 +11)=y 6 +11y 3 −2y
(y 3 −2)(y 3 +11)=y 3 (y 3 +11)−2(y 3 +11)=y 6 +11y 3 −2y 3
(y 3 −2)(y 3 +11)=y 3 (y 3 +11)−2(y 3 +11)=y 6 +11y 3 −2y 3 −22
(y 3 −2)(y 3 +11)=y 3 (y 3 +11)−2(y 3 +11)=y 6 +11y 3 −2y 3 −22=y
(y 3 −2)(y 3 +11)=y 3 (y 3 +11)−2(y 3 +11)=y 6 +11y 3 −2y 3 −22=y 6
(y 3 −2)(y 3 +11)=y 3 (y 3 +11)−2(y 3 +11)=y 6 +11y 3 −2y 3 −22=y 6 +9y
(y 3 −2)(y 3 +11)=y 3 (y 3 +11)−2(y 3 +11)=y 6 +11y 3 −2y 3 −22=y 6 +9y 3
(y 3 −2)(y 3 +11)=y 3 (y 3 +11)−2(y 3 +11)=y 6 +11y 3 −2y 3 −22=y 6 +9y 3 −22
(y 3 −2)(y 3 +11)=y 3 (y 3 +11)−2(y 3 +11)=y 6 +11y 3 −2y 3 −22=y 6 +9y 3 −22degree =6
(y 3 −2)(y 3 +11)=y 3 (y 3 +11)−2(y 3 +11)=y 6 +11y 3 −2y 3 −22=y 6 +9y 3 −22degree =6When we write a polynomial in standard form, the highest-degree term comes first and lowest-degree term as last.