Math, asked by monkeyking33, 10 months ago

write the following rational numbers in ascending and descending order:- -3/7, -3/2, -3/4, -2/9, -4/3​

Answers

Answered by Anonymous
3

\huge{\mathfrak{\star{\pink h{\purple o{\pink l{\purple a}}}}}}{\star}

\huge{\purple{\boxed{\boxed{\boxed{\pink{\underline{\underline{\red{\mathcal{YOUR\:ANS}}}}}}}}}}

 \frac{3}{7}  >  \frac{ - 2}{9}  >  \frac{ - 3}{4} > \frac{ - 3}{2}  >  \frac{ - 4}{3}

<font color="orange"><marquee>hope it helps uhh

please mark me as brainliest

Answered by windyyork
3

The descending and ascending orders are as follows resp:

\dfrac{-56}{252}>\dfrac{-108}{252}>\dfrac{-189}{252}>\dfrac{-336}{252}>\dfrac{-378}{252}\\\\\dfrac{-378}{252}<\dfrac{-336}{252}<\dfrac{-189}{252}<\dfrac{-108}{252}<\dfrac{-56}{252}

Step-by-step explanation:

Since we have given that

-\dfrac{3}{7},\dfrac{-3}{2},\dfrac{-3}{4},\dfrac{-2}{9},\dfrac{-4}{3}

LCM of 7, 2, 4, 9, 3 = 252

So, it becomes,

\dfrac{-3\times 36}{7\times 36}=\dfrac{-108}{252}

\dfrac{-3\times 126}{2\times 126}=\dfrac{-378}{252}

\dfrac{-3\times 63}{4\times 63}=\dfrac{-189}{252}

\dfrac{-2\times 28}{9\times 28}=\dfrac{-56}{252}

\dfrac{-4\times 84}{3\times 84}=\dfrac{-336}{252}

So, the descending and ascending orders are as follows resp:

\dfrac{-56}{252}>\dfrac{-108}{252}>\dfrac{-189}{252}>\dfrac{-336}{252}>\dfrac{-378}{252}\\\\\dfrac{-378}{252}<\dfrac{-336}{252}<\dfrac{-189}{252}<\dfrac{-108}{252}<\dfrac{-56}{252}

# learn more:

-1/3,-2/9,-4/3 Write the following rational numbers in ascending order

https://brainly.in/question/13563579

Similar questions