Math, asked by RubanHundal, 3 months ago

write the following rational numbers in ascending order -3/10,7/-15,-11/20,18/-30

Answers

Answered by rohitrawat4686
0

Answer:

these are already in ascending order..

Answered by george0096
4

Step-by-step explanation:

Finding LCM of 10, 15, 20 and 30:

\begin{gathered}{\begin{array}{ c|c} \frak{ \sf{5}}& \rm{ \sf{10,15,20,30}}\\ \dfrac{\qquad}{ \sf 2}&\dfrac{\qquad}{ \sf \;\;\;\;2,3,4,6\;\;\;\;}\\ \dfrac{\qquad}{ \sf 3}& \dfrac{\qquad}{ \sf \;\;\;\;1,3,2,3\;\;\;\;}\\ \dfrac{\qquad}{ \sf }& \dfrac{\qquad}{ \sf \;\;\;\;1,1,2,1\;\;\;\;} \end{array}}\end{gathered}

Hence, LCM of 10, 15, 20 and 30 = (5 × 2 × 3 × 2) = 60

Now,

Converting all the fraction in like fractions with denominator 60:

\sf{\longmapsto\dfrac{-3}{10}=\dfrac{-3\times6}{10\times6}=\dfrac{-18}{60}}

\sf{\longmapsto\dfrac{7}{-15}=\dfrac{7\times(-4)}{15\times(-4)}=\dfrac{-28}{60}}

\sf{\longmapsto\dfrac{-11}{20}=\dfrac{-11\times3}{20\times3}=\dfrac{-33}{60}}

\sf{\longmapsto\dfrac{18}{-30}=\dfrac{18\times(-2)}{30\times(-2)}=\dfrac{-36}{60}}

As, the fractions are with same denominator, we can compare them.

Clearly,

\rm{\dfrac{-36}{60}<\dfrac{-33}{60}<\dfrac{-28}{60}<\dfrac{-18}{60}}

Therefore,

\rm{\dfrac{18}{-30}<\dfrac{-11}{20}<\dfrac{7}{-15}<\dfrac{-3}{10}}

Similar questions