Math, asked by Adityayadav2010, 22 days ago

Write the following rational numbers in standard form:
)−16−20 ii) 14−70 iii) −3280 iv) −65−52

Answers

Answered by barani7953
0

Step-by-step explanation:

simplest or lowest form when- </p><p></p><p>1. Numerator and denominator have only 1 as its highest common factor.</p><p></p><p> 2. Denominator is a positive integer.</p><p></p><p> (i) The HCF of 12 and 30 is 6 </p><p></p><p>Therefore,</p><p></p><p>\(\frac{-12}{30}=\frac{-12\div6}{30\div6}\)</p><p></p><p>\(\Rightarrow\)\(\frac{-12}{30}=\frac{-2}{5}\)</p><p></p><p>(ii) The HCF of 49 and 14 is 7</p><p></p><p> Therefore,</p><p></p><p>\(\frac{-14}{49}=\frac{-14\div7}{49\div7}\)</p><p></p><p>\(\Rightarrow\)\(\frac{-14}{49}=\frac{-2}{7}\)</p><p></p><p>(iii) The HCF of 24 and 64 is 8 </p><p></p><p>Therefore,</p><p></p><p>\(\frac{24}{-64}=\frac{24\div8}{-64\div8}\)</p><p></p><p>\(\Rightarrow\)\(\frac{24}{-64}=\frac{3}{-8}\)</p><p></p><p>In order, to make the denominator positive, multiply both numerator and denominator by -1</p><p></p><p>\(\Rightarrow\)\(\frac{24}{-64}=\frac{3}{-8}=\frac{3\times-1}{-8\times-1}\)</p><p></p><p>\(\Rightarrow\)\(\frac{24}{-64}=\frac{-3}{8}\)</p><p></p><p>(iv) The HCF of 36 and 63 is 9 </p><p></p><p>Therefore,</p><p></p><p>\(\frac{-36}{-63}=\frac{-36\div9}{-63\div9}\)</p><p></p><p>\(\Rightarrow\)\(\frac{-36}{-63}=\frac{-4}{-7}\)</p><p></p><p>In order, to make the denominator positive, multiply both numerator and denominator by -1</p><p></p><p> \(\Rightarrow\)\(\frac{-36}{-63}=\frac{-4}{-7}=\frac{-4\times-1}{-7\times-1}\)</p><p></p><p>\(\Rightarrow\)\(\frac{-36}{-63}=\frac{4}{7}\)

Answered by aimandoll767
17

Answer:

20-16= 6

70-14= 56

65-52= 13

here is your answer

Similar questions