Math, asked by riturai973476, 1 month ago

write the formula a³- b³ pls answer​

Answers

Answered by princess1702
3

Step-by-step explanation:

a³-b³= (a-b)(a²+ab+ b²)

Answered by Anonymous
28

\begin{gathered}{\underline{\underbrace{\Huge{\bigstar{\textsf{\textbf{\blue{Solution :}}}}}}}}\end{gathered}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\red{\large \qquad \boxed{\boxed{\begin{array}{cc}  \tt a³- b³ \\  \\  \tt a³-b³= (a-b)(a²+ab+ b²)\end{array}}}}

More Explanation:-

 \footnotesize{ \tt (i) a³+b³ = (a+b)(a²-ab+b²)}

 \tt Or

 \footnotesize{ \tt {= (a+b)³-3ab(a+b)}}

 \footnotesize \tt{ii) a³-b³ = (a-b)(a²+ab+b²)}

 \tt Or

 \footnotesize{ \tt{= (a-b)³+3ab(a-b)}}

 \boxed{\tt{i) We  \: know \:  the \:  algebraic \:  identity:}}

 \footnotesize \tt{a³+3a²b+3ab²+b³ = (a+b)³}

 \footnotesize \tt{ \implies{ a³+b³+3ab(a+b)=(a+b)³}}

 \footnotesize{ \tt \implies{a³+b³ = (a+b)³-3ab(a+b) \longrightarrow (1)}}

 \footnotesize \tt{(a+b)[(a+b)²-3ab]}

 \footnotesize \tt{ (a+b)(a²+2ab+b²-3ab)}

 \footnotesize{ \tt{ \implies(a+b)(a²-ab+b²) \longrightarrow(2)}}

 \boxed {\tt ii)   By  \: algebraic \:  identity:,}

 \footnotesize \tt{a³-3a²b+3ab²-b³ = (a-b)³}

 \footnotesize \tt{\implies a³-b³-3ab(a-b)=(a-b)³}

 \footnotesize \tt{\implies a³-b³ = (a-b)³+3ab(a-b) \longrightarrow(3)}

 \footnotesize \tt{ \implies (a-b)[(a-b)²+3ab]}

 \footnotesize \tt{ \implies(a-b)(a²-2ab+b²+3ab)}

 \footnotesize \tt{ \implies (a-b)(a²+ab+b²) \longrightarrow(4)}

 \footnotesize \tt{i)a³+b³ = (a+b)(a²-ab+b²)}

 \tt Or

 \footnotesize \tt{ \implies (a+b)³-3ab(a+b)}

 \footnotesize \tt{ii) a³-b³ =(a-b)(a²+ab+b²)}

 \tt Or

 \footnotesize \tt{ \implies (a-b)³+3ab(a-b)}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Similar questions