Write the formulae for exponents and powers
Answers
Formulas and properties of exponents are used in the reduction and simplification of expressions, and in solving equations and inequalities.
1.a^0 = 1 (a ≠ 0) - zero exponent property
2.a^1 = a - any number raised by the exponent 1 is the number itself
3.a^n * a^m = a^(n + m) - product of powers property
4.(a^n)^m = a^(nm) - power of a power property
5.a^n*b^n = (ab)^n - power of a product property
6.a^-n = (1/a)^n - negative exponent property
7.a^n/a^m = a^(n - m)- quotient of powers property
8.a^(1/n) = n√a - rational exponent property
Step-by-step explanation:
Laws of Integral Exponents
For any two real numbers a and b, a, b ≠ 0, and for any two positive integers, m and n
➲ If a be any non - zero rational number, then
a^0 = 1
➲ If a be any non - zero rational number and m,n be integer, then
(a^m)^n = a^mn
➲ If a be any non - zero rational number and m be any positive integer, then
a^-m = 1/a^m
➲ If a/b is a rational number and m is a positive integer, then
(a/b)^m = a^m/b^m
➲ For any Integers m and n and any rational number a, a ≠ 0
a^m × a^n = a^m+n
➲ For any Integers m and n for non - zero rational number a,
a^m ÷ a^n = a^m-n
➲ If a and b are non - zero rational numbers and m is any integer, then
(a+b)^m = a^m × b^m
I hope it's help you...☺