Geography, asked by banduxxx1978, 1 year ago

write the formulas( lateral surface area / curved surface area / volume / diagonal) if required ( cube, cuboid, cylinder, cone, sphere and hemisphere)​

Answers

Answered by nihiradas18
13

Answer:

Cuboid

(a) Volume of cuboid = lbh

(b) Total surface area of cuboid = 2 ( lb + bh + hl )

(c) Lateral surface area of cuboid = 2 h (l + b)

(d) Diagonal of cuboid = √l∧2 *b∧2*h∧2

Cube

(a) Volume of cube = a∧3

(b) Lateral Surface area = 4a∧2

(c) Total surface area of cube = 6a∧2

(d) Diagonal of cube = a √3

Cylinder

(a) Volume of cylinder = πr∧2 h

(b) Curved surface area of cylinder = 2πrh

(c) Total surface area of cylinder = 2πr (r + h)

Cone

(a) Volume of cone = 1/3π r∧2h

(b) Curved surface area of cone = πrl

(c) Total surface area of cone = πr (l + r)

(d) Slant height of cone  = √h∧2 +r∧2

Sphere

(a) Volume of sphere = 4 /3 π∧3

b) Surface area of sphere = 4πr∧2

Hemisphere

(a) Volume of hemisphere = 2 /3 πr ∧3

(b) Curved surface area of hemisphere = 2πr∧2

(c) Total surface area of hemisphere = 3πr∧2

Answered by Anonymous
2

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\Huge\red{\mid{\overline{\underline{ ANSWER }}}\mid }

━━━━━━━━━━━━━━━━━━━━━━━━━

\Large\fbox{\color{purple}{QUESTION}}

SURFACE AREA VOLUME FORMULAS

━━━━━━━━━━━━━━━━━━━━━━━━━

\Large\fbox{\color{purple}{ SOLUTION }}

\Large\mathcal\green{FRUSTUM}

 \implies \: tsa = \pi \: l(r1 + r2) + \pi \:  {r1}^{2}  +  \pi {r2}^{2}

 \implies volume =  \frac{1}{3}\pi \: h( {r1}^{2}  + r1.r2 +  {r2}^{2} )

\Large\mathcal\purple{CUBOID}

 \implies \: lsa = 2(l + b)h \\  \\  \:  \implies \: tsa = 2(lb + bl + hl) \\  \\ \implies \:  volume \:  = l \times b \times h

\Large\mathcal\blue{CUBE}

  \implies \: lsa =  {4a}^{2}  \\  \\  \implies \: tsa =  {6a}^{2}  \\  \\  \implies \: volume =  {a}^{3}

\Large\mathcal\brown{CYLINDER}

 \implies \: csa = 2\pi \: r \: h \\  \\  \implies \: tsa  = 2\pi \: r(r + h) \\  \\  \implies \: volume \:  = \pi \:  {r}^{2} h</p><p>

\Large\mathcal\orange{CONE}

 \implies \: tsa \:  = \: \pi \: r \: (l + r)  \\  \\  \implies \: csa \:  =  \pi \: r \: l\\  \\  \implies \: volume \:  =  \frac{1}{3} (\pi \:  {r}^{2} h)

\Large\mathcal\red {SPHERE }

\implies \: tsa \:  = 4\pi \: {r}^{2}  \\  \\  \implies \: csa \:  = 4\pi \:  {r}^{2}  \\  \\  \implies \: volume \:  =  \frac{4}{3}   \: {r}^{3}

\Large\mathcal\pink{HEMISPHERE}

\implies \: tsa \:  =3\pi \:  {r}^{2}   \\  \\  \implies \: csa \:  = 2\pi \:  {r}^{2}  \\  \\  \implies \: volume \:  =  \frac{2}{3} \pi \:  {r}^{3}

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\Large\red{ THANKS \: FOR \: YOUR}

\bf\Large\red{ QUESTION \: HOPE \: IT  }

\bf\Large\red{ HELPS  }

\Large\mathcal\green{FOLLOW \: ME}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions