Math, asked by pavan481, 1 year ago

Write the function tan^−1 1/√(x^2−1),| x|>1, in the simplest form.

Answers

Answered by Pitymys
3

Given the function  \tan ^{-1}(\frac{1}{\sqrt{x^2-1}})  ,|x|>1 .

let  x=\sec \theta . Then

 \frac{1}{\sqrt{x^2-1}}=\frac{1}{\sqrt{\sec^2 \theta-1}}\\<br />\frac{1}{\sqrt{x^2-1}}=\frac{1}{\sqrt{\tan^2 \theta-1}}\\<br />\frac{1}{\sqrt{x^2-1}}=\frac{1}{\tan \theta}\\<br />\frac{1}{\sqrt{x^2-1}}=\cot \theta

So the given function is

 \tan ^{-1}(\frac{1}{\sqrt{x^2-1}})= \tan ^{-1}(\cot \theta)\\<br /> \tan ^{-1}(\frac{1}{\sqrt{x^2-1}})= \tan ^{-1}(\tan(\frac{\pi}{2}- \theta)) \\<br /> \tan ^{-1}(\frac{1}{\sqrt{x^2-1}})= \frac{\pi}{2}- \theta\\<br /> \tan ^{-1}(\frac{1}{\sqrt{x^2-1}})= \frac{\pi}{2}- \sec^{-1} x \\<br /> \tan ^{-1}(\frac{1}{\sqrt{x^2-1}})= \csc^{-1} x ,|x|&gt;1

Similar questions