Math, asked by pushpamalaashokg, 7 months ago

write the gp whose 4th term is 54 and the 7th term is 1458​

Answers

Answered by yogitakambleyk19
0

4th term = 54

7th term = 1458

t4=54

ar3=54⋯(1)

t7=1458

a.r6=1458⋯(2)

12=ar3ar6=541458

r3=27.

r3=33

r=3

Substitute r = 3 in the first equation , we get 

a(3)3=54.

a(27)=54

a=54/27=2.

∴ The G.P form

a,ar,ar2⋯

=2,2(3),2(3)2⋯

=2,6,18⋯

hope it will be useful

please follow me and mark mi as brainleast

Answered by King412
53

\blue\star\bold{Question:-}

Write the gp whose 4th term is 54 and the 7th term is 1458.

\blue\star\bold\red{Given:-}

\mathrm{\:\:\:\:4th\: term = t4 = 54}

\mathrm{\:\:\:\:7th \:term = t7 = 1458}

\blue\star\bold{Solution:-}

\mathrm{\:\:\:\:\:\:\:t4 = 54}

\mathrm{ar³ = 54 }.......\fbox{equation 1}

\mathrm{\:\:\:\:\:\:\:t7 = 1458}

\mathrm{ar⁶ = 1458 }.......\fbox{equation\: 2}

\mathrm{Now,}

 \:  \:  \:  \:  \:  \:  \:  \:  \frac{2}{1}  =  \frac{ {ar}^{6} }{ {ar}^{3} }  =  \frac{1458}{54}

⇒ {r}^{3}  = 27

⇒ {r}^{3}  =  {3}^{3}

⇒r = 3

\mathrm{Substitute\:r=3\:in\:1st\: equation\:,we\:get}

➟a {(3)}^{3}  = 54

➟a(27) = 54

➟a = 54 \div 27 = 2

\mathrm{:. the\:gp\:form:-}

a,ar, {ar}^{2} ...........

⇒2,2(3),2 {(3)}^{2}

 ⇒ 2,6,18....................

\mathrm\blue{Ans:-}\mathrm\red{2,6,18......}

Similar questions