English, asked by sapnalimbu9010, 6 months ago

Write the identies of trigonometry?
who 'll answer fast I'll mark as a Brainliest​

Answers

Answered by Anonymous
13

Sine Function: sin(θ) = Opposite / Hypotenuse

Cosine Function: cos(θ) = Adjacent / Hypotenuse

Tangent Function: tan(θ) = Opposite / Adjacent

Answered by sauravshankar02
2

Recall that these identities work both ways. That is, if you have an expression that matches the left or right side of an identity, you can replace it with whatever is on the other side.

A. Reciprocal identities

a1  sin  A =

1

 csc  A

a4  csc  A =

1

 sin  A

a2  cos  A =

1

 sec  A

a5  sec  A =

1

 cos  A

a3  tan  A =

1

 cot  A

a6  cot  A =

1

 tan  A

B. Ratio identities

b1  tan  A =

 sin  A

 cos  A

b2  cot  A =

 cos  A

 sin  A

C. Opposite Angle identities

c1  sin  ( − A ) = −  sin  A

c2  cos  ( − A ) = + c o s A

c3  tan  ( − A ) = −  tan  A

D. Pythagorean identities

d1  sin  2 A +  cos  2 A = 1

d2 1 +  tan  2 A =  sec  2 A

d3 1 +  cot  2 A =  csc  2 A

E. Complementary angle identities

e1  sin  A =  cos 

π

2

− A

e2  tan  A =  cot 

π

2

− A

e3  sec  A =  csc 

π

2

− A

* Note:

π

2

is 90° in radians.

If A is in degrees, use 90 instead of

π

2

For example:  sin  A =  cos  ( 90 − A )

F. Supplementary angle identities

This basically says that if two angles are supplementary (add to 180°) they have the same sine.

f1  sin  A = s i n ( π − A ) ( 0 < = A < = π )

Or in degrees:

 sin  A = s i n ( 180 − A ) ( 0 < = A < = 180 )

G. The sum identities

g1  sin  ( A + B ) =  sin  A  cos  B +  cos  A  sin  B

g2  cos  ( A + B ) =  cos  A  cos  B −  sin  A  sin  B

g3  tan  ( A + B ) =

 tan  A +  tan  B

1 −  tan  A    tan  B

H. The difference identities

h1  sin  ( A − B ) =  sin  A  cos  B −  cos  A  sin  B

h2  cos  ( A − B ) =  cos  A  cos  B +  sin  A  sin  B

h3  tan  ( A − B ) =

 tan  A −  tan  B

1 −  tan  A    tan  B

J. The double angle identities

j1  sin  2 A = 2  sin  A    cos  A

j2  cos  2 A =  cos  2 A −  sin  2 A

j3  cos  2 A = 2  cos  2 A − 1

j4  cos  2 A = 1 − 2  sin  2 A

j5  tan  2 A =

2  tan  A

1 −  tan  2 A

K. The half angle identities

k1  sin 

A

2

= √

1 −  cos  A

2

k2  cos 

A

2

= √

1 +  cos  A

2

k3  tan 

A

2

=

 sin  A

1 +  cos  A

k4  tan 

A

2

=

1 −  cos  A

 sin  A

M. The sine identities

These show how to represent the sine function in terms of the other five functions. Some of these identities may also appear under other headings.

m1  sin  A = ± √ 1 −  cos  2 A

m2  sin  A = ±

 tan  A

√ 1 +  tan  2 A

m3  sin  A =

1

 csc  A

m4  sin  A = ±

√  sec  2 A − 1

 sec  A

m5  sin  A = ±

1

√ 1 +  cot  2 A

N. The cosine identities

These show how to represent the cosine function in terms of the other five functions. Some of these identities may also appear under other headings.

n1  cos  A = ± √ 1 −  sin  2 A

n2  cos  A = ±

1

√ 1 +  tan  2 A

n3  cos  A =

1

 sec  A

n4  cos  A = ±

√  csc  2 A − 1

 csc  A

n5  cos  A = ±

 cot  A

√ 1 +  cot  2 A

P. The tangent identities

These show how to represent the tangent function in terms of the other five functions. Some of these trig identities may also appear under other headings.

p1  tan  A = ± √  sec  2 − 1

p2  tan  A = ±

1

√  csc  2 A − 1

p3  tan  A =

1

 cot  A

p4  tan  A = ±

√ 1 −  cos  2 A

 cos  A

p5  tan  A = ±

 sin  A

√ 1 −  sin  2 A

Similar questions