Math, asked by kantilalahari501, 5 months ago

write the identity (x+y+z)2​

Answers

Answered by ritika123489
4

Formula for (x-y-z)^2(x−y−z)

2

(x-y-z)^2(x−y−z)

2

=(x)^2+(-y)^2+(z)^2+2.x.(-y)+2.(-y).(-z)+2.(-z).x=(x)

2

+(−y)

2

+(z)

2

+2.x.(−y)+2.(−y).(−z)+2.(−z).x

=x^2+y^2+z^2-2xy+2yz-2zx=x

2

+y

2

+z

2

−2xy+2yz−2zx

Proof:

Let us take (x-y)=p(x−y)=p

Substituting this in the above given formula,

\begin{gathered}(x-y-z)^2=(p-z)^2\\\\=p^2+z^2-2pz\end{gathered}

(x−y−z)

2

=(p−z)

2

=p

2

+z

2

−2pz

We know that, (x-y)=p(x−y)=p , substitute this in the above one, we get,

\begin{gathered}\begin{array} { c } { = ( x - y ) ^ { 2 } + z ^ { 2 } - 2 p z } \\\\ { = x ^ { 2 } + y ^ { 2 } - 2 x y + z ^ { 2 } - 2 p z } \\\\ { = x ^ { 2 } + y ^ { 2 } - 2 x y + z ^ { 2 } - 2 ( x - y ) z } \\\\ { = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } - 2 x y - 2 x z + 2 y z } \\\\ { ( x - y - z ) ^ { 2 } = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } - 2 x y + 2 y z - 2 x z } \end{array}\end{gathered}

=(x−y)

2

+z

2

−2pz

=x

2

+y

2

−2xy+z

2

−2pz

=x

2

+y

2

−2xy+z

2

−2(x−y)z

=x

2

+y

2

+z

2

−2xy−2xz+2yz

(x−y−z)

2

=x

2

+y

2

+z

2

−2xy+2yz−2xz

Hence, proved the above driven formula.

Thus, the formula for (x-y-z)^2(x−y−z)

2

will be

x^2+y^2+z^2-2xy+2yz-2xzx

2

+y

2

+z

2

−2xy+2yz−2xz

Answered by vibhutichandera2005
7

Step-by-step explanation:

(x+y+z)²= x²+ y²+ z²+ 2xy + 2yz + 2zx

Similar questions