Math, asked by gaurav916316, 2 months ago

Write the interval in which the
function f(x) = x², is strictly
increasing

Answers

Answered by mathdude500
2

Given Question :-

  • Write the interval in which the function f(x) = x², is strictly increasing.

Answer

Given :-

  • A function f(x) = x²,

To Find :-

  • Intervals of strictly increasing.

Concept :-

Definition :-

  • A function is said to be an increasing function if the value of y increases with the increase in x.

  • A function is said to be a decreasing function if the value of y decreases with the increase in x. 

We can use the first derivative test to check whether the function is increasing or decreasing.

Let f be continuous on [a, b] and differentiable on the open interval (a, b). Then

  • (a) If f′(x) > 0 for each x ∈ (a, b) then f is strictly increasing in interval (a, b)
  • (b) If f′(x) < 0 for each x ∈ (a, b) then f is strictly decreasing  in interval (a, b)
  • (c) If f′(x) = 0 for each x ∈ (a, b) then f is a constant function in (a, b)

Let's Solve the problem now!!

CALCULATION :-

Given,

\rm :\longmapsto\:f(x) =  {x}^{2}

  • Differentiate both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} f(x) = \dfrac{d}{dx}  {x}^{2}

\rm :\longmapsto\:f'(x) = 2x

Now,

  • For f(x) to be strictly increasing,

\rm :\longmapsto\:f'(x) &gt; 0

\rm :\implies\:2x &gt; 0

\rm :\implies\:x &gt; 0

\rm :\implies\: \boxed{ \bf \: x \:  \in \: (0, \:  \infty)}

Additional Information :-

Properties of Monotonic Functions

Increasing and decreasing functions have certain algebraic properties, which may be useful in the investigation of functions. Here are some of them:

  • If the functions f and g are increasing (decreasing) on the interval (a,b), then the sum of the functions f+g is also increasing (decreasing) on this interval.

  • If the function f is increasing (decreasing) on the interval (a,b), then the opposite function −f is decreasing (increasing) on this interval.

  • If the function f is increasing (decreasing) on the interval (a,b), then the inverse function 1f is decreasing (increasing) on this interval.

  • If the functions f and g are increasing (decreasing) on the interval (a,b) and moreover, f≥0, g≥0, then the product of the functions fg is also increasing (decreasing) on this interval.

Similar questions