write the law of exponents in case of rational numbers
Answers
Answered by
4
For any rational number
![\frac{a {}^{n} }{a {}^{m} } = {a}^{n - m} \frac{a {}^{n} }{a {}^{m} } = {a}^{n - m}](https://tex.z-dn.net/?f=+%5Cfrac%7Ba+%7B%7D%5E%7Bn%7D+%7D%7Ba+%7B%7D%5E%7Bm%7D+%7D++%3D++%7Ba%7D%5E%7Bn+-+m%7D+)
![{a}^{n} \times {a}^{m} = {a}^{n + m} {a}^{n} \times {a}^{m} = {a}^{n + m}](https://tex.z-dn.net/?f=+%7Ba%7D%5E%7Bn%7D++%5Ctimes++%7Ba%7D%5E%7Bm%7D++%3D++%7Ba%7D%5E%7Bn+%2B+m%7D+)
![(a \times b) {}^{n} \\ = {a}^{n} \times {b}^{n} (a \times b) {}^{n} \\ = {a}^{n} \times {b}^{n}](https://tex.z-dn.net/?f=%28a+%5Ctimes+b%29+%7B%7D%5E%7Bn%7D++%5C%5C++%3D++%7Ba%7D%5E%7Bn%7D++%5Ctimes++%7Bb%7D%5E%7Bn%7D+)
![{a}^{n} \times {b}^{n} = (a \times b) {}^{n} {a}^{n} \times {b}^{n} = (a \times b) {}^{n}](https://tex.z-dn.net/?f=+%7Ba%7D%5E%7Bn%7D++%5Ctimes++%7Bb%7D%5E%7Bn%7D++%3D+%28a+%5Ctimes+b%29+%7B%7D%5E%7Bn%7D+)
![(a {}^{n} ) {}^{m} = {a}^{mn} (a {}^{n} ) {}^{m} = {a}^{mn}](https://tex.z-dn.net/?f=%28a+%7B%7D%5E%7Bn%7D+%29+%7B%7D%5E%7Bm%7D++%3D++%7Ba%7D%5E%7Bmn%7D+)
Saurabhchaurasia:
thanks
Similar questions