Math, asked by Micey36211, 19 days ago

Write the laws of exponents and also make some examples of these

Answers

Answered by Sowntharyabalu
0

Answer:

Law of Reciprocal: a^{-n} =\frac{1}{a^{n} }

Exponent with Fractional Index: x^{\frac{m}{n} } =\sqrt[n]{x^{m} }

Product Law of Exponents: x^{m}\times x^{n}=x^{m+n}

Power of Product Rule: (a\times b)^{n} = a^{n} \times b^{n}

Quotient Law of Exponents: x^{m} \div x^{n}=x^{m-n}

Power Law of Exponents: (x^{m}) ^{n}  =x^{mn}

Power of Quotient Rule: (\frac{a}{b})^{n} = \frac{a^{n} }{b^{n}}

Step-by-step explanation:

Law of Reciprocal: a^{-n} =\frac{1}{a^{n} }

Example:

a^{-5} =\frac{1}{a^{5} }\\

Exponent with Fractional Index: x^{\frac{m}{n} } =\sqrt[n]{x^{m} }

Example:

x^{\frac{5}{2} } =\sqrt[2]{x^{5} }

Product Law of Exponents: x^{m}\times x^{n}=x^{m+n}

Example:

x^{2}\times x^{5}=x^{2+5}\\x^{2}\times x^{5}=x^{7}

Power of Product Rule: (a\times b)^{n} = a^{n} \times b^{n}

Example:

(2\times 2)^{2} = 2^{2} \times 2^{2}\\(2\times 2)^{2} = 4 \times 4\\(2\times 2)^{2} = 16

Quotient Law of Exponents: x^{m} \div x^{n}=x^{m-n}

Example:

x^{5} \div x^{2}=x^{5-2}\\x^{5} \div x^{2}=x^{3}

Power Law of Exponents: (x^{m}) ^{n}  =x^{mn}

Example:

(x^{2}) ^{5}  =x^{2\times 5}\\(x^{2}) ^{5}  =x^{10}

Power of Quotient Rule: (\frac{a}{b})^{n} = \frac{a^{n} }{b^{n}}

Example:

(\frac{5}{2})^{2} = \frac{5^{2} }{2^{2}}\\(\frac{5}{2})^{2} = \frac{25}{4}

Similar questions