Write the nature of the roots of the quadratic equation 3x
2 −
√
6x − 2 = 0
Answers
EXPLANATION.
Quadratic equation.
⇒ 3x² - √6x - 2 = 0.
As we know that,
⇒ D = Discriminant Or b² - 4ac.
⇒ D = (-√6)² - 4(3)(-2).
⇒ D = 6 + 24.
⇒ D = 30.
Roots are real and unequal : D > 0.
MORE INFORMATION.
Nature of the roots of the quadratic expression.
(1) = Real and unequal, if b² - 4ac > 0.
(2) = Real and different, if b² - 4ac is a perfect square.
(3) = Real and equal, if b² - 4ac = 0.
(4) = If D < 0 Roots are imaginary and unequal Or complex conjugate.
Step-by-step explanation:
ANSWER ✍️
Quadratic equation.
⇒ 3x² - √6x - 2 = 0.
As we know that,
⇒ D = Discriminant Or b² - 4ac.
⇒ D = (-√6)² - 4(3)(-2).
⇒ D = 6 + 24.
⇒ D = 30.
Roots are real and unequal : D > 0.
MORE INFORMATION.
Nature of the roots of the quadratic expression.
(1) = Real and unequal, if b² - 4ac > 0.
(2) = Real and different, if b² - 4ac is a perfect square.
(3) = Real and equal, if b² - 4ac = 0.
(4) = If D < 0 Roots are imaginary and unequal Or complex conjugate.