Math, asked by arotesamarth5, 3 months ago

Write the next two terms of A. P. if a = 10 & d = 2.​

Answers

Answered by AaryakingThakur
41

Answer:

a = t1 = 10 - given

d = 2. - given

We know that,

t2 = a + d

= 10 + 2

:. t2 = 12

t3 = a + 2d. OR t3 = t2 + d

= 10 + 2(2) t3 = 12 + 2

= 10 + 4. :. t3 = 14

:. t3 = 14

:. the next two terms are 12 and 14.

Hope it helps :) Do mark it as The Brainliest !

Answered by BrainlyRish
17

Given :

  • a or First Term of A.P is 10 .
  • d or Common Difference is 2 .

Need To Find :

The next two term of an A.P are -:

  • a_{2} Second term of an A.P .
  • a_{3} Third term of an A.P .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Finding a_{2} of A.P :

\dag\frak{\underline { As,\:We\:know\:that\::}}\\

\underline {\boxed { \sf { \star a_{n} = a + ( n - 1) d}}}

Where ,

  • n is the number of terms , d is common Difference & a is the first term of A.P .

Then ,

\underline {\boxed { \sf { \star a_{2} = a + ( 2 - 1) d}}}

\underline {\frak{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

:\implies \sf{ a_{2} = 10 + (2-1) 2 }\\\\

:\implies \sf{ a_{2} = 10 + (1) 2 }\\\\

:\implies \sf{ a_{2} = 10 +  2 }\\\\

\underline {\boxed{\pink{ \mathrm {  a_{2}\:or\:Second \:Term\:= 12\: }}}}\:\bf{\bigstar}\\

And ,

\underline {\boxed { \sf { \star a_{3} = a + ( 3 - 1) d}}}

\underline {\frak{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

:\implies \sf{ a_{3} = 10 + (3-1) 2 }\\\\

:\implies \sf{ a_{3} = 10 + (2) 2 }\\\\

:\implies \sf{ a_{3} = 10 +  4 }\\\\

\underline {\boxed{\pink{ \mathrm {  a_{3}\:or\:Third \:Term\:= 14\: }}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  Hence,\:The\:next\:two\:term\:of\:an\:A.P\:are\:\bf{12\:and\:14}.}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions