Math, asked by ashutosh84, 1 year ago

write the nth term of an. A.P 1/m,1+m/m,1+2m/n

Answers

Answered by aaishashafeek
195

Answer: (1+mn-m)/m


Step-by-step explanation: Please find in the attachment...


Hope it helps!!!


Attachments:
Answered by mysticd
132

Answer:

n^{th}\:term \: of\:a.p=a_{n}=\frac{1+mn-m}{m}

Step-by-step explanation:

 Given\: A.P\:\\\frac{1}{m},\frac{1+m}{m},\frac{1+2m}{m}

 common \: difference (d)\\=a_{2}-a_{1}\\=\frac{1+m}{m}-\frac{1}{m}\\=\frac{1+m-1}{m}\\=\frac{m}{m}\\=1

\* We know that,

\boxed {n^{th}\: term =a_{n}=a+(n-1)d}

\implies a_{n}=\frac{1}{m}+(n-1)1\\=\frac{1+(n-1)m}{m}\\=\frac{1+mn-m}{m}

Therefore,

n^{th}\:term =a_{n}=\frac{1+mn-m}{m}

Similar questions