Math, asked by dhruv69420, 12 hours ago


Write the number of points where f(x) = |x+2|+|x+3|
is not differentiable.

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) =  |x + 2| +  |x + 3|

Let first define the function f(x).

Here, we have two critical points, -2 and -3.

So,

\begin{gathered}\begin{gathered}\bf\: f(x) = \begin{cases} &\sf{ - (x + 2) - (x + 3) \:  \:  \: when \: x <  - 3} \\ &\sf{(x + 3) - (x + 2) \:  \:  \: when \:  - 3 \leqslant x \leqslant  - 2}\\ &\sf{x + 2 + (x + 3) \:  \:  \: when \: x  >  - 2 } \end{cases}\end{gathered}\end{gathered}

can be further simplified to

\begin{gathered}\begin{gathered}\bf\: f(x) = \begin{cases} &\sf{  - 2x - 5 \:  \:  \: when \: x <  - 3} \\ &\sf{ \:  \:  \:  \:  \:  \: 1 \:  \:  \: when \:  - 3 \leqslant x \leqslant  - 2}\\ &\sf{2x + 5 \:  \:  \: when \: x  >  - 2 } \end{cases}\end{gathered}\end{gathered}

Let we check differentiability at breaking points

Differentiability at x = - 2

Left Hand Derivative

\rm :\longmapsto\:\displaystyle\lim_{x \to  - 2^{ - } }  \frac{f(x) - f( - 2)}{x - ( - 2)}

\rm \:  =  \: \displaystyle\lim_{x \to  - 2^{ - } }  \frac{1 - 1}{x + 2}

\rm \:  =  \: 0

Right Hand Derivative

\rm :\longmapsto\:\displaystyle\lim_{x \to  - 2^{ + } }  \frac{f(x) - f( - 2)}{x - ( - 2)}

\rm \:  =  \: \displaystyle\lim_{x \to  - 2^{ + } }  \frac{2x + 5 - 1}{x + 2}

\rm \:  =  \: \displaystyle\lim_{x \to  - 2^{ + } }  \frac{2x + 4}{x + 2}

\rm \:  =  \: \displaystyle\lim_{x \to  - 2^{ + } }  \frac{2(x + 2)}{x + 2}

\rm \:  =  \: \displaystyle\lim_{x \to  - 2^{ + } } 2

\rm \:  =  \: 2

\bf\implies \:LHD \:  \ne \: RHD

\rm \implies\:f(x) \: is \: not \: differentiable \: at \: x =  - 2

Differentiability at x = - 3

Left Hand Derivative

\rm :\longmapsto\:\displaystyle\lim_{x \to  - 3^{ - } }  \frac{f(x) - f( - 3)}{x - ( - 3)}

\rm \:  =  \: \displaystyle\lim_{x \to  - 3^{ - } }  \frac{ - 2x - 5 - 1}{x + 3}

\rm \:  =  \: \displaystyle\lim_{x \to  - 3^{ - } }  \frac{ - 2x - 6}{x + 3}

\rm \:  =  \: \displaystyle\lim_{x \to  - 3^{ - } }  \frac{ - 2(x + 3)}{x + 3}

\rm \:  =  \: \displaystyle\lim_{x \to  - 3^{ - } }  - 2

\rm \:  =  \:  - 2

Right Hand Derivative

\rm :\longmapsto\:\displaystyle\lim_{x \to  - 3^{ + } }  \frac{f(x) - f( - 3)}{x - ( - 3)}

\rm \:  =  \: \displaystyle\lim_{x \to  - 3^{ - } }  \frac{1 - 1}{x + 3}

\rm \:  =  \: 0

\bf\implies \:LHD \:  \ne \: RHD

\rm \implies\:f(x) \: is \: not \: differentiable \: at \: x =  - 3

Hence,

\rm \implies\:f(x) \: is \: not \: differentiable \: at \: x =  - 3 \: and \: x =  - 2

\rm \implies\:f(x) \: is \: not \: differentiable \: exactly \: at \: 2 \: points

Similar questions