Biology, asked by cmadhavilatha, 9 months ago

write the observations of pristley experiment​

Answers

Answered by juraijkhan864
1

Answer:

Experiments and Observations on Different Kinds of Air (1774–86) is a six-volume work published by 18th-century British polymath Joseph Priestley which reports a series of his experiments on "airs" or gases, most notably his discovery of oxygen gas (which he called "dephlogisticated air").

Explanation:

mark me as brilliant plz if you liked the answer

Answered by Anonymous
1

 \underline{\underline{\huge{\mathfrak{ \red{Answer :}}}}}

When Joseph Priestley discovered oxygen in 1774, he answered age-old questions of why and how things burn. An Englishman by birth, Priestley was deeply involved in politics and religion, as well as science. When his vocal support for the American and French revolutions made remaining in his homeland dangerous, Priestley left England in 1794 and continued his work in America until his death.

 \underline{\underline{\huge{\mathfrak{ \blue{About Joseph Priestly:}}}}}

Some 2,500 years ago, the ancient Greeks identified air — along with earth, fire and water — as one of the four elemental components of creation. That notion may seem charmingly primitive now. But it made excellent sense at the time, and there was so little reason to dispute it that the idea persisted until the late 18th century. It might have endured even longer had it not been for a free-thinking English chemist and maverick theologian named Joseph Priestley.

Priestley (1733-1804) was hugely productive in research and widely notorious in philosophy. He invented carbonated water and the rubber eraser, identified a dozen key chemical compounds, and wrote an important early paper about electricity. His unorthodox religious writings and his support for the American and French revolutions so enraged his countrymen that he was forced to flee England in 1794. He settled in Pennsylvania, where he continued his research until his death.

The world recalls Priestley best as the man who discovered oxygen, the active ingredient in our planet's atmosphere. In the process, he helped dethrone an idea that dominated science for 23 uninterrupted centuries: Few concepts "have laid firmer hold upon the mind," he wrote, than that air "is a simple elementary substance, indestructible and unalterable."

In a series of experiments culminating in 1774, Priestley found that "air is not an elementary substance, but a composition," or mixture, of gases. Among them was the colorless and highly reactive gas he called "dephlogisticated air," to which the great French chemist Antoine Lavoisier would soon give the name "oxygen."

It is hard to overstate the importance of Priestley's revelation. Scientists now recognize 92 naturally occurring elements-including nitrogen and oxygen, the main components of air. They comprise 78 and 21 percent of the atmosphere, respectively.

Understanding the Composition of Air

In the mid-18th century, the concept of an element was still evolving. Researchers had distinguished no more than two dozen or so elements, depending on who was doing the counting. It wasn't clear how air fit into that system. Nobody knew what it was, and researchers kept finding that it could be converted into such a variety of forms that they routinely spoke of different "airs."

The principal method for altering the nature of air, early chemists learned, was to heat or burn some compound in it. The second half of the 1700s witnessed an explosion of interest in such gases. The steam engine was in the process of transforming civilization, and scientists of all types were fascinated with combustion and the role of air in it.

British chemists were especially prolific. In 1754, Joseph Black identified what he called "fixed air" (now known to be carbon dioxide) because it could be returned, or fixed, into the sort of solids from which it was produced. In 1766, a wealthy eccentric named Henry Cavendish produced the highly flammable substance Lavoisier would name hydrogen, from the Greek words for "water maker."

Finally in 1772, Daniel Rutherford found that when he burned material in a bell jar, then absorbed all the "fixed" air by soaking it up with a substance called potash, a gas remained. Rutherford dubbed it "noxious air" because it asphyxiated mice placed in it. Today, we call it nitrogen.

But none of those revelations alone tells the whole story. The next major discovery would come from a man whose early life gave no indication that he would become one of the greatest experimental chemists in history.

Similar questions