write the ordinary differential equation y dx + ( xy + x - 3y ) dy = 0 in the linear form, and hence find its solution.
Answers
Answered by
7
ODE Ordinary differential equation of 1st order
y dx + (xy + x - 3y) dy = 0
(y dx + x dy) + xy dy - 3 y dy = 0
Let xy = u , x dy + y dx = du
So du + u dy - 3 y dy = 0
du / dy + u = 3 y ---- Linear form of ODE
This ODE is in the form of u' + p(y) u = q(y)
Function p(y) = 1 , and q(y) = 3 y
Integrating factor: μ(y) = exp{Integral p(y) dy } = e^y
So the solution: u(y) = 1/μ(y) * [ integral μ(y) q(y) dy + C]
=> u(y) = e^(-y) * [ integral 3 y e^y + C ]
= e^(-y) * (3 y e^y - 3 e^y + C ]
= 3 y - 3 + C e^(-y)
=> x y = 3 y - 3 + C e^(-y)
x - 3 = -3 / y + C /[ y e^y]
x - 3 = [ C - 3 e^y ] / [ y e^y ]
y dx + (xy + x - 3y) dy = 0
(y dx + x dy) + xy dy - 3 y dy = 0
Let xy = u , x dy + y dx = du
So du + u dy - 3 y dy = 0
du / dy + u = 3 y ---- Linear form of ODE
This ODE is in the form of u' + p(y) u = q(y)
Function p(y) = 1 , and q(y) = 3 y
Integrating factor: μ(y) = exp{Integral p(y) dy } = e^y
So the solution: u(y) = 1/μ(y) * [ integral μ(y) q(y) dy + C]
=> u(y) = e^(-y) * [ integral 3 y e^y + C ]
= e^(-y) * (3 y e^y - 3 e^y + C ]
= 3 y - 3 + C e^(-y)
=> x y = 3 y - 3 + C e^(-y)
x - 3 = -3 / y + C /[ y e^y]
x - 3 = [ C - 3 e^y ] / [ y e^y ]
kvnmurty:
click on red heart thanks above pls
Similar questions