Write the parts and their functions of electric motor and electric generator...
Answers
Answered by
3
GA generator converts mechanical energy
into electrical energy, while a motor does
the opposite it converts electrical energy
into mechanical energy. Both devices work
because of electromagnetic induction,
which is when a voltage is induced by a
changing magnetic field.
CYah:
I asked their parts and their functions
Answered by
0
Electric motors rely on electromagnetic induction, a phenomenon discovered in the early 1800s by physicist Michael Faraday.
The Stator, Rotor, Brushes and Commutator
Rather than using a permanent magnet, modern commercial electric motors usually rely completely on electromagnets. A series of small coils arranged in a circular arrangement forms the stator, and these coils generate a standing magnetic field. A a separate coil wound around an armature and attached to a shaft forms the rotor, which spins inside the field. Because you can't attach wires to a spinning coil, the rotor usually incorporates metallic brushes that remain in contact with a conducting surface on the stator. This surface, along with the stator windings, are connected to power terminals located on the motor housing.
Gears and Belts
By itself, a spinning motor shaft isn't very useful, unless you want to use it for drilling or for spinning a fan blade. Most motors incorporate a system of gears and/or drive belts to convert the energy of the spinning shaft into useful movement. The configuration of the belts or gears can increase rotational speed on an adjacent shaft, which results in a reduction of power, or it can increase the power while reducing rotational speed. Worm-drive gears can change the direction of rotation by 90 degrees. Gears and belts make it possible for a single motor to perform a variety of functions simultaneously.
The Stator, Rotor, Brushes and Commutator
Rather than using a permanent magnet, modern commercial electric motors usually rely completely on electromagnets. A series of small coils arranged in a circular arrangement forms the stator, and these coils generate a standing magnetic field. A a separate coil wound around an armature and attached to a shaft forms the rotor, which spins inside the field. Because you can't attach wires to a spinning coil, the rotor usually incorporates metallic brushes that remain in contact with a conducting surface on the stator. This surface, along with the stator windings, are connected to power terminals located on the motor housing.
Gears and Belts
By itself, a spinning motor shaft isn't very useful, unless you want to use it for drilling or for spinning a fan blade. Most motors incorporate a system of gears and/or drive belts to convert the energy of the spinning shaft into useful movement. The configuration of the belts or gears can increase rotational speed on an adjacent shaft, which results in a reduction of power, or it can increase the power while reducing rotational speed. Worm-drive gears can change the direction of rotation by 90 degrees. Gears and belts make it possible for a single motor to perform a variety of functions simultaneously.
Similar questions
Math,
7 months ago
Environmental Sciences,
7 months ago
Math,
1 year ago
India Languages,
1 year ago