Math, asked by sgaileandat5266, 1 year ago

Write the possible solution steady state of two dimensional heat flow equation

Answers

Answered by rohan25novfeb
1
The two-dimensional heat balance equation is given by (see, e.g., [16, 17])1()1+1()1=().(2.1)The imposed boundary conditions are()1=−()0,1−∞,1=0,,1=−∞1,1=,1=0,1=0,()1=−()1,2−∞,1=2.(2.2)

Here,  is the dimensionless temperature,  is the fin base temperature,  is the heat transfer coefficient, 1 is the longitudinal coordinate, 1 is the transverse coordinate,  is the internal heat generation function, and  is the thermal conductivity. Several authors have considered the two-dimensional problem with =0 and thermal conductivity being a constant (see, e.g., [19, 20]) and the case =0 with a temperature-dependent thermal conductivity [21].

Introducing the dimensionless variables=−∞−∞,=1,=1/2,()=(),ℎ()=()ℎ,2=/22,()=()(/2)2−∞,(2.3)

we obtain2()+()=2().(2.4)

The corresponding dimensionless boundary conditions are()=−Biℎ(),=0,(1,)=(),=1,=0,=0,()=−Biℎ(),=1,(2.5)where  is the fin extension factor (purely geometric parameter), and Bi=ℎ/ and Bi=ℎ(/2)/ are the Biot numbers.  is the reciprocal to aspect ratio (see, e.g., [16]). ℎ and  are the heat transfer at the base and thermal conductivity of the fin at the ambient temperature, respectively.

Answered by PriyankaBhoopathi
0

Answer:

Give three possible solutions of two dimensional steady state heat flow equation

Similar questions