Write the properties of rational numbers with suitable example
Answers
Answered by
5
Properties of rational numbers : There are some properties of rational numbers like closure property, commutative property and associative property.
(i) Closure property :
The sum of any two rational numbers is always a rational number. This is called ‘Closure property of addition’ of rational numbers. Thus, Q is closed under addition
If a/b and c/d are any two rational numbers, then (a/b) + (c/d) is also a rational number.
(ii) Commutative property :
Addition of two rational numbers is commutative.
If a/b and c/d are any two rational numbers,
then (a/b) + (c/d) = (c/d) + (a/b)
Example :
2/9 + 4/9 = 6/9 = 2/3
4/9 + 2/9 = 6/9 = 2/3
Hence, 2/9 + 4/9 = 4/9 + 2/9
Example :
2/9 + 4/9 = 6/9 = 2/3 is a rational number.
(iii) Associative property :
Addition of rational numbers is associative.
If a/b, c/d and e/f are any three rational numbers,
then a/b + (c/d + e/f) = (a/b + c/d) + e/f
Example :
2/9 + (4/9 + 1/9) = 2/9 + 5/9 = 7/9
(2/9 + 4/9) + 1/9 = 6/9 + 1/9 = 7/9
Hence, 2/9 + (4/9 + 1/9) = (2/9 + 4/9) + 1/9
HOPE IT WILL HELP YOU...PLZ MARK IT AS BRAINLIEST ANSWER
(i) Closure property :
The sum of any two rational numbers is always a rational number. This is called ‘Closure property of addition’ of rational numbers. Thus, Q is closed under addition
If a/b and c/d are any two rational numbers, then (a/b) + (c/d) is also a rational number.
(ii) Commutative property :
Addition of two rational numbers is commutative.
If a/b and c/d are any two rational numbers,
then (a/b) + (c/d) = (c/d) + (a/b)
Example :
2/9 + 4/9 = 6/9 = 2/3
4/9 + 2/9 = 6/9 = 2/3
Hence, 2/9 + 4/9 = 4/9 + 2/9
Example :
2/9 + 4/9 = 6/9 = 2/3 is a rational number.
(iii) Associative property :
Addition of rational numbers is associative.
If a/b, c/d and e/f are any three rational numbers,
then a/b + (c/d + e/f) = (a/b + c/d) + e/f
Example :
2/9 + (4/9 + 1/9) = 2/9 + 5/9 = 7/9
(2/9 + 4/9) + 1/9 = 6/9 + 1/9 = 7/9
Hence, 2/9 + (4/9 + 1/9) = (2/9 + 4/9) + 1/9
HOPE IT WILL HELP YOU...PLZ MARK IT AS BRAINLIEST ANSWER
Similar questions